|
SNAP Library 4.1, User Reference
2018-07-26 16:30:42
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
Go to the source code of this file.
Functions | |
| void | LearnEmbeddings (TVVec< TInt, int64 > &WalksVV, const int &Dimensions, const int &WinSize, const int &Iter, const bool &Verbose, TIntFltVH &EmbeddingsHV) |
| Learns embeddings using SGD, Skip-gram with negative sampling. More... | |
Variables | |
| const int | MaxExp = 6 |
| const int | ExpTablePrecision = 10000 |
| const int | TableSize = MaxExp*ExpTablePrecision*2 |
| const int | NegSamN = 5 |
| const double | StartAlpha = 0.025 |
| void LearnEmbeddings | ( | TVVec< TInt, int64 > & | WalksVV, |
| const int & | Dimensions, | ||
| const int & | WinSize, | ||
| const int & | Iter, | ||
| const bool & | Verbose, | ||
| TIntFltVH & | EmbeddingsHV | ||
| ) |
Learns embeddings using SGD, Skip-gram with negative sampling.
Definition at line 160 of file word2vec.cpp.
| const int ExpTablePrecision = 10000 |
Definition at line 13 of file word2vec.h.
| const int MaxExp = 6 |
Definition at line 10 of file word2vec.h.
| const int NegSamN = 5 |
Definition at line 17 of file word2vec.h.
| const double StartAlpha = 0.025 |
Definition at line 20 of file word2vec.h.
| const int TableSize = MaxExp*ExpTablePrecision*2 |
Definition at line 14 of file word2vec.h.