|
SNAP Library 2.2, User Reference
2014-03-11 19:15:55
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
#include <agmdirected.h>
Public Member Functions | |
| TCoda (const PNGraph &GraphPt, const int &InitComs, const int RndSeed=0) | |
| TCoda () | |
| void | SetGraph (const PNGraph &GraphPt) |
| PNGraph | GetGraph () |
| PNGraph | GetGraphRawNID () |
| void | SetRegCoef (const double _RegCoef) |
| double | GetRegCoef () |
| void | RandomInit (const int InitComs) |
| int | GetNumComs () |
| void | NeighborComInit (const int InitComs) |
| void | NeighborComInit (TFltIntPrV &NIdPhiV, const int InitComs) |
| void | SetCmtyVV (const TVec< TIntV > &CmtyVVOut, const TVec< TIntV > &CmtyVVIn) |
| double | Likelihood (const bool DoParallel=false) |
| double | LikelihoodForNode (const bool IsRow, const int UID) |
| double | LikelihoodForNode (const bool IsRow, const int UID, const TIntFltH &FU) |
| void | GetNonEdgePairScores (TFltIntIntTrV &ScoreV) |
| void | GetNIDValH (TIntFltH &NIdValInOutH, TIntFltH &NIdValOutH, TIntFltH &NIdValInH, const int CID, const double Thres) |
| void | DumpMemberships (const TStr &OutFNm, const TStrHash< TInt > &NodeNameH) |
| void | DumpMemberships (const TStr &OutFNm, const TStrHash< TInt > &NodeNameH, const double Thres) |
| void | GetCmtyS (TIntSet &CmtySOut, TIntSet &CmtySIn, const int CID, const double Thres) |
| void | DumpMemberships (const TStr &OutFNm, const double Thres) |
| void | DumpMemberships (const TStr &OutFNm) |
| void | GetCommunity (TIntV &CmtyVIn, TIntV &CmtyVOut, const int CID) |
| void | GetCommunity (TIntV &CmtyVIn, TIntV &CmtyVOut, const int CID, const double Thres) |
| extract community affiliation for given community ID | |
| void | GetTopCIDs (TIntV &CIdV, const int TopK, const int IsAverage=1, const int MinSz=1) |
| void | GradientForNode (const bool IsRow, const int UID, TIntFltH &GradU, const TIntSet &CIDSet) |
| void | SetHoldOut (const double HOFrac) |
| void | GetCmtyVV (TVec< TIntV > &CmtyVVOut, TVec< TIntV > &CmtyVVIn, const int MinSz=3) |
| void | GetCmtyVV (TVec< TIntV > &CmtyVVOut, TVec< TIntV > &CmtyVVIn, const double ThresOut, const double ThresIn, const int MinSz=3) |
| void | GetCmtyVV (const bool IsOut, TVec< TIntV > &CmtyVV) |
| void | GetCmtyVV (const bool IsOut, TVec< TIntV > &CmtyVV, const double Thres, const int MinSz=3) |
| extract community affiliation for outgoing edges from F_uc | |
| void | GetCmtyVVUnSorted (const bool IsOut, TVec< TIntV > &CmtyVV, const double Thres, const int MinSz=3) |
| void | GetCmtyVVUnSorted (TVec< TIntV > &CmtyVVOut, TVec< TIntV > &CmtyVVIn) |
| int | FindComsByCV (TIntV &ComsV, const double HOFrac=0.2, const int NumThreads=20, const TStr PlotLFNm=TStr(), const int EdgesForCV=100, const double StepAlpha=0.3, const double StepBeta=0.1) |
| int | FindComsByCV (const int NumThreads, const int MaxComs, const int MinComs, const int DivComs, const TStr OutFNm, const int EdgesForCV=100, const double StepAlpha=0.3, const double StepBeta=0.3) |
| estimate number of communities using cross validation | |
| double | LikelihoodHoldOut (const bool DoParallel=false) |
| double | GetStepSizeByLineSearch (const bool IsRow, const int UID, const TIntFltH &DeltaV, const TIntFltH &GradV, const double &Alpha, const double &Beta, const int MaxIter=10) |
| int | MLEGradAscent (const double &Thres, const int &MaxIter, const TStr PlotNm, const double StepAlpha=0.3, const double StepBeta=0.1) |
| int | MLEGradAscentParallel (const double &Thres, const int &MaxIter, const int ChunkNum, const int ChunkSize, const TStr PlotNm, const double StepAlpha=0.3, const double StepBeta=0.1) |
| int | MLEGradAscentParallel (const double &Thres, const int &MaxIter, const int ChunkNum, const TStr PlotNm=TStr(), const double StepAlpha=0.3, const double StepBeta=0.1) |
| void | Save (TSOut &SOut) |
| void | Load (TSIn &SIn, const int &RndSeed=0) |
| TFlt & | GetSumVal (const bool IsOut, const int CID) |
| double | GetCom (const bool IsOut, const int &NID, const int &CID) |
| double | GetComOut (const int &NID, const int &CID) |
| double | GetComIn (const int &NID, const int &CID) |
| void | AddCom (const bool IsOut, const int &NID, const int &CID, const double &Val) |
| void | AddComOut (const int &NID, const int &CID, const double &Val) |
| void | AddComIn (const int &NID, const int &CID, const double &Val) |
| void | DelCom (const bool IsOut, const int &NID, const int &CID) |
| void | DelComOut (const int &NID, const int &CID) |
| void | DelComIn (const int &NID, const int &CID) |
| double | DotProduct (const TIntFltH &UV, const TIntFltH &VV) |
| double | DotProductUtoV (const int &UID, const int &VID) |
| double | Prediction (const TIntFltH &FU, const TIntFltH &HV) |
| double | Prediction (const int &UID, const int &VID) |
| double | Sum (const TIntFltH &UV) |
| double | Norm2 (const TIntFltH &UV) |
Public Attributes | |
| TFlt | MinVal |
| TFlt | MaxVal |
| TFlt | NegWgt |
| TFlt | PNoCom |
| TBool | DoParallel |
Private Attributes | |
| PNGraph | G |
| TVec< TIntFltH > | F |
| TVec< TIntFltH > | H |
| TRnd | Rnd |
| TIntV | NIDV |
| TFlt | RegCoef |
| TFltV | SumFV |
| TFltV | SumHV |
| TBool | NodesOk |
| TInt | NumComs |
| TVec< TIntSet > | HOVIDSV |
Definition at line 7 of file agmdirected.h.
| TCoda::TCoda | ( | const PNGraph & | GraphPt, |
| const int & | InitComs, | ||
| const int | RndSeed = 0 |
||
| ) | [inline] |
Definition at line 27 of file agmdirected.h.
| TCoda::TCoda | ( | ) | [inline] |
Definition at line 29 of file agmdirected.h.
{ G = TNGraph::New(); }
| void TCoda::AddCom | ( | const bool | IsOut, |
| const int & | NID, | ||
| const int & | CID, | ||
| const double & | Val | ||
| ) | [inline] |
Definition at line 114 of file agmdirected.h.
| void TCoda::AddComIn | ( | const int & | NID, |
| const int & | CID, | ||
| const double & | Val | ||
| ) | [inline] |
| void TCoda::AddComOut | ( | const int & | NID, |
| const int & | CID, | ||
| const double & | Val | ||
| ) | [inline] |
| void TCoda::DelCom | ( | const bool | IsOut, |
| const int & | NID, | ||
| const int & | CID | ||
| ) | [inline] |
Definition at line 135 of file agmdirected.h.
| void TCoda::DelComIn | ( | const int & | NID, |
| const int & | CID | ||
| ) | [inline] |
| void TCoda::DelComOut | ( | const int & | NID, |
| const int & | CID | ||
| ) | [inline] |
| double TCoda::DotProduct | ( | const TIntFltH & | UV, |
| const TIntFltH & | VV | ||
| ) | [inline] |
Definition at line 154 of file agmdirected.h.
{
double DP = 0;
if (UV.Len() > VV.Len()) {
for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
if (VV.IsKey(HI.GetKey())) {
DP += VV.GetDat(HI.GetKey()) * HI.GetDat();
}
}
} else {
for (TIntFltH::TIter HI = VV.BegI(); HI < VV.EndI(); HI++) {
if (UV.IsKey(HI.GetKey())) {
DP += UV.GetDat(HI.GetKey()) * HI.GetDat();
}
}
}
return DP;
}
| double TCoda::DotProductUtoV | ( | const int & | UID, |
| const int & | VID | ||
| ) | [inline] |
Definition at line 171 of file agmdirected.h.
{
return DotProduct(F[UID], H[VID]);
}
| void TCoda::DumpMemberships | ( | const TStr & | OutFNm, |
| const TStrHash< TInt > & | NodeNameH | ||
| ) | [inline] |
Definition at line 45 of file agmdirected.h.
{ DumpMemberships(OutFNm, NodeNameH, sqrt(PNoCom)); }
| void TCoda::DumpMemberships | ( | const TStr & | OutFNm, |
| const TStrHash< TInt > & | NodeNameH, | ||
| const double | Thres | ||
| ) |
Definition at line 617 of file agmdirected.cpp.
{
if (NodeNameH.Len() > 0) { IAssert(NodeNameH.Len() == G->GetNodes()); }
FILE* FId = fopen(OutFNm.CStr(), "wt");
TIntFltH CIDSumFH(NumComs);
for (int c = 0; c < NumComs; c++) {
CIDSumFH.AddDat(c, GetSumVal(true, c) * GetSumVal(false, c));
}
CIDSumFH.SortByDat(false);
for (int c = 0; c < NumComs; c++) {
int CID = CIDSumFH.GetKey(c);
TIntFltH NIDOutFH, NIDInFH, NIDInOutFH;
GetNIDValH(NIDInOutFH, NIDOutFH, NIDInFH, CID, Thres);
if (NIDOutFH.Len() == 0 || NIDInFH.Len() == 0) { continue; }
/*
if (GetSumVal(true, CID) < Thres && GetSumVal(false, CID) < Thres) { continue; }
for (int u = 0; u < NIDV.Len(); u++) {
if (GetCom(true, u, CID) >= Thres && GetCom(false, u, CID) >= Thres) {
NIDInOutFH.AddDat(u, GetCom(true, u, CID) + GetCom(false, u, CID));
} else if (GetCom(true, u, CID) >= Thres) {
NIDOutFH.AddDat(u, GetCom(true, u, CID));
} else if (GetCom(false, u, CID) >= Thres) {
NIDInFH.AddDat(u, GetCom(false, u, CID));
}
}
NIDInOutFH.SortByDat(false);
NIDInFH.SortByDat(false);
NIDOutFH.SortByDat(false);
*/
fprintf(FId, "%d\t%d\t%d\t%f\t%f\t%f\t", NIDInOutFH.Len(), NIDInFH.Len() - NIDInOutFH.Len(), NIDOutFH.Len() - NIDInOutFH.Len(), CIDSumFH.GetDat(CID).Val, GetSumVal(false, CID).Val, GetSumVal(true, CID).Val);
fprintf(FId, "InOut:\t");
for (int u = 0; u < NIDInOutFH.Len(); u++) {
int NIdx = NIDInOutFH.GetKey(u);
fprintf(FId, "%s (%f)\t", NodeNameH.GetKey(NIdx), NIDInOutFH[u].Val);
}
fprintf(FId, "In:\t");
for (int u = 0; u < NIDInFH.Len(); u++) {
int NIdx = NIDInFH.GetKey(u);
fprintf(FId, "%s (%f)\t", NodeNameH.GetKey(NIdx), NIDInFH[u].Val);
}
fprintf(FId, "Out:\t");
for (int u = 0; u < NIDOutFH.Len(); u++) {
int NIdx = NIDOutFH.GetKey(u);
fprintf(FId, "%s (%f)\t", NodeNameH.GetKey(NIdx), NIDOutFH[u].Val);
}
fprintf(FId, "\n");
}
fclose(FId);
}
| void TCoda::DumpMemberships | ( | const TStr & | OutFNm, |
| const double | Thres | ||
| ) |
Definition at line 668 of file agmdirected.cpp.
{
TStrHash<TInt> NodeNameH(G->GetNodes(), false);
for (int u = 0; u < NIDV.Len(); u++) { NodeNameH.AddKey(TStr::Fmt("%d", NIDV[u].Val)); }
DumpMemberships(OutFNm, NodeNameH, Thres);
}
| void TCoda::DumpMemberships | ( | const TStr & | OutFNm | ) | [inline] |
Definition at line 49 of file agmdirected.h.
{ DumpMemberships(OutFNm, sqrt(PNoCom)); }
| int TCoda::FindComsByCV | ( | TIntV & | ComsV, |
| const double | HOFrac = 0.2, |
||
| const int | NumThreads = 20, |
||
| const TStr | PlotLFNm = TStr(), |
||
| const int | EdgesForCV = 100, |
||
| const double | StepAlpha = 0.3, |
||
| const double | StepBeta = 0.1 |
||
| ) |
Definition at line 746 of file agmdirected.cpp.
{
if (ComsV.Len() == 0) {
int MaxComs = G->GetNodes() / 5;
ComsV.Add(2);
while(ComsV.Last() < MaxComs) { ComsV.Add(ComsV.Last() * 2); }
}
int MaxIterCV = 3;
TVec<TVec<TIntSet> > HoldOutSets(MaxIterCV);
TFltIntPrV NIdPhiV;
TAGMFastUtil::GetNIdPhiV<PNGraph>(G, NIdPhiV);
if (G->GetEdges() > EdgesForCV) { //if edges are many enough, use CV
printf("generating hold out set\n");
TIntV NIdV1, NIdV2;
G->GetNIdV(NIdV1);
G->GetNIdV(NIdV2);
for (int IterCV = 0; IterCV < MaxIterCV; IterCV++) {
// generate holdout sets
TAGMFastUtil::GenHoldOutPairs(G, HoldOutSets[IterCV], HOFrac, Rnd);
/*
HoldOutSets[IterCV].Gen(G->GetNodes());
const int HOTotal = int(HOFrac * G->GetNodes() * (G->GetNodes() - 1) / 2.0);
int HOCnt = 0;
int HOEdges = (int) TMath::Round(HOFrac * G->GetEdges());
printf("holding out %d edges...\n", HOEdges);
for (int he = 0; he < (int) HOEdges; he++) {
HoldOutSets[IterCV][EdgeV[he].Val1].AddKey(EdgeV[he].Val2);
HoldOutSets[IterCV][EdgeV[he].Val2].AddKey(EdgeV[he].Val1);
HOCnt++;
}
printf("%d Edges hold out\n", HOCnt);
while(HOCnt++ < HOTotal) {
int SrcNID = Rnd.GetUniDevInt(G->GetNodes());
int DstNID = Rnd.GetUniDevInt(G->GetNodes());
HoldOutSets[IterCV][SrcNID].AddKey(DstNID);
HoldOutSets[IterCV][DstNID].AddKey(SrcNID);
}
*/
}
printf("hold out set generated\n");
}
TFltV HOLV(ComsV.Len());
TIntFltPrV ComsLV;
for (int c = 0; c < ComsV.Len(); c++) {
const int Coms = ComsV[c];
printf("Try number of Coms:%d\n", Coms);
if (G->GetEdges() > EdgesForCV) { //if edges are many enough, use CV
for (int IterCV = 0; IterCV < MaxIterCV; IterCV++) {
HOVIDSV = HoldOutSets[IterCV];
NeighborComInit(NIdPhiV, Coms);
printf("Initialized\n");
if (NumThreads == 1) {
printf("MLE without parallelization begins\n");
MLEGradAscent(0.05, 10 * G->GetNodes(), "", StepAlpha, StepBeta);
} else {
printf("MLE with parallelization begins\n");
MLEGradAscentParallel(0.05, 100, NumThreads, "", StepAlpha, StepBeta);
}
double HOL = LikelihoodHoldOut();
HOL = HOL < 0? HOL: TFlt::Mn;
HOLV[c] += HOL;
}
}
else {
HOVIDSV.Gen(G->GetNodes());
MLEGradAscent(0.0001, 100 * G->GetNodes(), "");
double BIC = 2 * Likelihood() - (double) G->GetNodes() * Coms * 2.0 * log ( (double) G->GetNodes());
HOLV[c] = BIC;
}
}
int EstComs = 2;
double MaxL = TFlt::Mn;
printf("\n");
for (int c = 0; c < ComsV.Len(); c++) {
ComsLV.Add(TIntFltPr(ComsV[c].Val, HOLV[c].Val));
printf("%d(%f)\t", ComsV[c].Val, HOLV[c].Val);
if (MaxL < HOLV[c]) {
MaxL = HOLV[c];
EstComs = ComsV[c];
}
}
printf("\n");
RandomInit(EstComs);
HOVIDSV.Gen(G->GetNodes());
if (! PlotLFNm.Empty()) {
TGnuPlot::PlotValV(ComsLV, PlotLFNm, "hold-out likelihood", "communities", "likelihood");
}
return EstComs;
}
| int TCoda::FindComsByCV | ( | const int | NumThreads, |
| const int | MaxComs, | ||
| const int | MinComs, | ||
| const int | DivComs, | ||
| const TStr | OutFNm, | ||
| const int | EdgesForCV = 100, |
||
| const double | StepAlpha = 0.3, |
||
| const double | StepBeta = 0.3 |
||
| ) |
estimate number of communities using cross validation
Definition at line 733 of file agmdirected.cpp.
{
double ComsGap = exp(TMath::Log((double) MaxComs / (double) MinComs) / (double) DivComs);
TIntV ComsV;
ComsV.Add(MinComs);
while (ComsV.Len() < DivComs) {
int NewComs = int(ComsV.Last() * ComsGap);
if (NewComs == ComsV.Last().Val) { NewComs++; }
ComsV.Add(NewComs);
}
if (ComsV.Last() < MaxComs) { ComsV.Add(MaxComs); }
return FindComsByCV(ComsV, 0.1, NumThreads, OutFNm, EdgesForCV, StepAlpha, StepBeta);
}
| void TCoda::GetCmtyS | ( | TIntSet & | CmtySOut, |
| TIntSet & | CmtySIn, | ||
| const int | CID, | ||
| const double | Thres | ||
| ) |
| void TCoda::GetCmtyVV | ( | TVec< TIntV > & | CmtyVVOut, |
| TVec< TIntV > & | CmtyVVIn, | ||
| const int | MinSz = 3 |
||
| ) |
| void TCoda::GetCmtyVV | ( | TVec< TIntV > & | CmtyVVOut, |
| TVec< TIntV > & | CmtyVVIn, | ||
| const double | ThresOut, | ||
| const double | ThresIn, | ||
| const int | MinSz = 3 |
||
| ) |
Definition at line 727 of file agmdirected.cpp.
| void TCoda::GetCmtyVV | ( | const bool | IsOut, |
| TVec< TIntV > & | CmtyVV | ||
| ) |
Definition at line 501 of file agmdirected.cpp.
| void TCoda::GetCmtyVV | ( | const bool | IsOut, |
| TVec< TIntV > & | CmtyVV, | ||
| const double | Thres, | ||
| const int | MinSz = 3 |
||
| ) |
extract community affiliation for outgoing edges from F_uc
Definition at line 539 of file agmdirected.cpp.
{
CmtyVV.Gen(NumComs, 0);
TIntFltH CIDSumFH(NumComs);
for (int c = 0; c < NumComs; c++) {
CIDSumFH.AddDat(c, GetSumVal(IsOut, c));
}
CIDSumFH.SortByDat(false);
for (int c = 0; c < NumComs; c++) {
int CID = CIDSumFH.GetKey(c);
TIntFltH NIDFucH, NIDHucH, NIDInOutH;
TIntV CmtyV;
GetNIDValH(NIDInOutH, NIDFucH, NIDHucH, CID, Thres);
if (IsOut) {
NIDFucH.GetKeyV(CmtyV);
} else {
NIDHucH.GetKeyV(CmtyV);
}
if (CmtyV.Len() >= MinSz) { CmtyVV.Add(CmtyV); }
}
if ( NumComs != CmtyVV.Len()) {
printf("Community vector generated. %d communities are ommitted\n", NumComs.Val - CmtyVV.Len());
}
}
| void TCoda::GetCmtyVVUnSorted | ( | const bool | IsOut, |
| TVec< TIntV > & | CmtyVV, | ||
| const double | Thres, | ||
| const int | MinSz = 3 |
||
| ) |
Definition at line 563 of file agmdirected.cpp.
{
CmtyVV.Gen(NumComs, 0);
for (int c = 0; c < NumComs; c++) {
TIntV CmtyV((int) (GetSumVal(IsOut, c) * 10), 0);
for (int u = 0; u < G->GetNodes(); u++) {
if (GetCom(IsOut, u, c) > Thres) { CmtyV.Add(NIDV[u]); }
}
if (CmtyV.Len() >= MinSz) { CmtyVV.Add(CmtyV); }
}
if ( NumComs != CmtyVV.Len()) {
printf("Community vector generated. %d communities are ommitted\n", NumComs.Val - CmtyVV.Len());
}
}
| void TCoda::GetCmtyVVUnSorted | ( | TVec< TIntV > & | CmtyVVOut, |
| TVec< TIntV > & | CmtyVVIn | ||
| ) |
Definition at line 722 of file agmdirected.cpp.
{
GetCmtyVVUnSorted(false, CmtyVVIn, sqrt(1.0 / G->GetNodes()));
GetCmtyVVUnSorted(true, CmtyVVOut, sqrt(1.0 / G->GetNodes()));
}
| double TCoda::GetCom | ( | const bool | IsOut, |
| const int & | NID, | ||
| const int & | CID | ||
| ) | [inline] |
Definition at line 93 of file agmdirected.h.
| double TCoda::GetComIn | ( | const int & | NID, |
| const int & | CID | ||
| ) | [inline] |
Definition at line 107 of file agmdirected.h.
| void TCoda::GetCommunity | ( | TIntV & | CmtyVIn, |
| TIntV & | CmtyVOut, | ||
| const int | CID | ||
| ) | [inline] |
Definition at line 50 of file agmdirected.h.
{ GetCommunity(CmtyVIn, CmtyVOut, CID, sqrt(PNoCom)); }
| void TCoda::GetCommunity | ( | TIntV & | CmtyVIn, |
| TIntV & | CmtyVOut, | ||
| const int | CID, | ||
| const double | Thres | ||
| ) |
extract community affiliation for given community ID
Definition at line 506 of file agmdirected.cpp.
{
TIntFltH NIDFucH(F.Len() / 10), NIDHucH(F.Len() / 10);
for (int u = 0; u < NIDV.Len(); u++) {
int NID = u;
if (! NodesOk) { NID = NIDV[u]; }
if (GetCom(true, u, CID) >= Thres) { NIDFucH.AddDat(NID, GetCom(true, u, CID)); }
if (GetCom(false, u, CID) >= Thres) { NIDHucH.AddDat(NID, GetCom(false, u, CID)); }
}
NIDFucH.SortByDat(false);
NIDHucH.SortByDat(false);
NIDFucH.GetKeyV(CmtyVOut);
NIDHucH.GetKeyV(CmtyVIn);
}
| double TCoda::GetComOut | ( | const int & | NID, |
| const int & | CID | ||
| ) | [inline] |
Definition at line 100 of file agmdirected.h.
| PNGraph TCoda::GetGraph | ( | ) | [inline] |
Definition at line 31 of file agmdirected.h.
{ return G; }
Definition at line 577 of file agmdirected.cpp.
{
PNGraph NewG = TNGraph::New(G->GetNodes(), -1);
for (TNGraph::TNodeI NI = G->BegNI(); NI < G->EndNI(); NI++) {
//add node
int NIdx = NI.GetId();
int NID = NIDV[NIdx];
if (! NewG->IsNode(NID)) { NewG->AddNode(NID); }
//add edge
for (int e = 0; e < NI.GetOutDeg(); e++) {
int OutNID = NIDV[NI.GetOutNId(e)];
if (! NewG->IsNode(OutNID)) { NewG->AddNode(OutNID); }
NewG->AddEdge(NID, OutNID);
}
}
IAssert(G->GetNodes() == NewG->GetNodes());
IAssert(G->GetEdges() == NewG->GetEdges());
return NewG;
}
| void TCoda::GetNIDValH | ( | TIntFltH & | NIdValInOutH, |
| TIntFltH & | NIdValOutH, | ||
| TIntFltH & | NIdValInH, | ||
| const int | CID, | ||
| const double | Thres | ||
| ) |
Definition at line 596 of file agmdirected.cpp.
{
NIdValOutH.Gen((int) GetSumVal(true, CID) + 1);
NIdValInH.Gen((int) GetSumVal(false, CID) + 1);
NIdValInOutH.Gen((int) GetSumVal(false, CID) + 1);
if (GetSumVal(true, CID) < Thres && GetSumVal(false, CID) < Thres) { return; }
for (int u = 0; u < NIDV.Len(); u++) {
if (GetCom(true, u, CID) >= Thres && GetCom(false, u, CID) >= Thres) {
NIdValInOutH.AddDat(NIDV[u], GetCom(true, u, CID) + GetCom(false, u, CID));
}
if (GetCom(true, u, CID) >= Thres) {
NIdValOutH.AddDat(NIDV[u], GetCom(true, u, CID));
}
if (GetCom(false, u, CID) >= Thres) {
NIdValInH.AddDat(NIDV[u], GetCom(false, u, CID));
}
}
NIdValInH.SortByDat(false);
NIdValOutH.SortByDat(false);
NIdValInOutH.SortByDat(false);
}
| void TCoda::GetNonEdgePairScores | ( | TFltIntIntTrV & | ScoreV | ) |
Definition at line 153 of file agmdirected.cpp.
{
ScoreV.Gen(G->GetNodes() * G->GetNodes(), 0);
TIntV NIDV;
G->GetNIdV(NIDV);
TIntSet Cuv;
for (int u = 0; u < NIDV.Len(); u++) {
int UID = NIDV[u];
for (int v = 0; v < NIDV.Len(); v++) {
int VID = NIDV[v];
if (UID == VID) { continue; }
if (! G->IsEdge(UID, VID)) {
double Val = 1.0 - Prediction(UID, VID);
ScoreV.Add(TFltIntIntTr(Val, UID, VID));
}
}
}
}
| int TCoda::GetNumComs | ( | ) | [inline] |
Definition at line 36 of file agmdirected.h.
| double TCoda::GetRegCoef | ( | ) | [inline] |
Definition at line 34 of file agmdirected.h.
{ return RegCoef; }
| double TCoda::GetStepSizeByLineSearch | ( | const bool | IsRow, |
| const int | UID, | ||
| const TIntFltH & | DeltaV, | ||
| const TIntFltH & | GradV, | ||
| const double & | Alpha, | ||
| const double & | Beta, | ||
| const int | MaxIter = 10 |
||
| ) |
Definition at line 859 of file agmdirected.cpp.
{
double StepSize = 1.0;
double InitLikelihood = LikelihoodForNode(IsRow, UID);
TIntFltH NewVarV(DeltaV.Len());
for(int iter = 0; iter < MaxIter; iter++) {
for (int i = 0; i < DeltaV.Len(); i++){
int CID = DeltaV.GetKey(i);
double NewVal;
NewVal = GetCom(IsRow, UID, CID) + StepSize * DeltaV.GetDat(CID);
if (NewVal < MinVal) { NewVal = MinVal; }
if (NewVal > MaxVal) { NewVal = MaxVal; }
NewVarV.AddDat(CID, NewVal);
}
if (LikelihoodForNode(IsRow, UID, NewVarV) < InitLikelihood + Alpha * StepSize * DotProduct(GradV, DeltaV)) {
StepSize *= Beta;
} else {
break;
}
if (iter == MaxIter - 1) {
StepSize = 0.0;
break;
}
}
return StepSize;
}
| TFlt& TCoda::GetSumVal | ( | const bool | IsOut, |
| const int | CID | ||
| ) | [inline] |
Definition at line 86 of file agmdirected.h.
| void TCoda::GetTopCIDs | ( | TIntV & | CIdV, |
| const int | TopK, | ||
| const int | IsAverage = 1, |
||
| const int | MinSz = 1 |
||
| ) |
Definition at line 520 of file agmdirected.cpp.
{
TIntFltH CIdFHH;
for (int c = 0; c < GetNumComs(); c++) {
if (IsAverage == 1) {
TIntV CmtyVIn, CmtyVOut;
GetCommunity(CmtyVIn, CmtyVOut, c);
if (CmtyVIn.Len() == 0 || CmtyVOut.Len() == 0) { continue; }
if (CmtyVIn.Len() < MinSz || CmtyVOut.Len() < MinSz) { continue; }
CIdFHH.AddDat(c, GetSumVal(true, c) * GetSumVal(false, c) / (double) CmtyVIn.Len() / (double) CmtyVOut.Len());
} else {
CIdFHH.AddDat(c, GetSumVal(true, c) * GetSumVal(false, c));
}
}
CIdFHH.SortByDat(false);
CIdFHH.GetKeyV(CIdV);
if (TopK < CIdFHH.Len()) { CIdV.Trunc(TopK); }
}
| void TCoda::GradientForNode | ( | const bool | IsRow, |
| const int | UID, | ||
| TIntFltH & | GradU, | ||
| const TIntSet & | CIDSet | ||
| ) |
Definition at line 377 of file agmdirected.cpp.
{
GradU.Gen(CIDSet.Len());
TFltV HOSumHV; //adjust for Hv of v hold out
if (HOVIDSV[UID].Len() > 0) {
HOSumHV.Gen(NumComs);
for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
for (int c = 0; c < SumHV.Len(); c++) {
HOSumHV[c] += GetCom(! IsRow, HOVIDSV[UID][e], c);
}
}
}
TNGraph::TNodeI NI = G->GetNI(UID);
int Deg = IsRow ? NI.GetOutDeg(): NI.GetInDeg();
TFltV PredV(Deg), GradV(CIDSet.Len());
TIntV CIDV(CIDSet.Len());
for (int e = 0; e < Deg; e++) {
int VID = IsRow? NI.GetOutNId(e): NI.GetInNId(e);
if (VID == UID) { continue; }
if (HOVIDSV[UID].IsKey(VID)) { continue; }
PredV[e] = IsRow? Prediction(UID, VID): Prediction(VID, UID);
}
for (int c = 0; c < CIDSet.Len(); c++) {
int CID = CIDSet.GetKey(c);
double Val = 0.0;
for (int e = 0; e < Deg; e++) {
int VID = IsRow? NI.GetOutNId(e): NI.GetInNId(e);
if (VID == UID) { continue; }
if (HOVIDSV[UID].IsKey(VID)) { continue; }
Val += PredV[e] * GetCom(! IsRow, VID, CID) / (1.0 - PredV[e]) + NegWgt * GetCom(! IsRow, VID, CID);
}
double HOSum = HOVIDSV[UID].Len() > 0? HOSumHV[CID].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
Val -= NegWgt * (GetSumVal(! IsRow, CID) - HOSum - GetCom(! IsRow, UID, CID));
CIDV[c] = CID;
GradV[c] = Val;
}
//add regularization
if (RegCoef > 0.0) { //L1
for (int c = 0; c < GradV.Len(); c++) {
GradV[c] -= RegCoef;
}
}
if (RegCoef < 0.0) { //L2
for (int c = 0; c < GradV.Len(); c++) {
GradV[c] += 2 * RegCoef * GetCom(IsRow, UID, CIDV[c]);
}
}
for (int c = 0; c < GradV.Len(); c++) {
if (GetCom(IsRow, UID, CIDV[c]) == 0.0 && GradV[c] < 0.0) { continue; }
if (fabs(GradV[c]) < 0.0001) { continue; }
GradU.AddDat(CIDV[c], GradV[c]);
}
for (int c = 0; c < GradU.Len(); c++) {
if (GradU[c] >= 10) { GradU[c] = 10; }
if (GradU[c] <= -10) { GradU[c] = -10; }
IAssert(GradU[c] >= -10);
}
}
| double TCoda::Likelihood | ( | const bool | DoParallel = false | ) |
Definition at line 231 of file agmdirected.cpp.
{
TExeTm ExeTm;
double L = 0.0;
if (_DoParallel) {
#pragma omp parallel for
for (int u = 0; u < F.Len(); u++) {
double LU = LikelihoodForNode(true, u);
#pragma omp atomic
L += LU;
}
}
else {
for (int u = 0; u < F.Len(); u++) {
double LU = LikelihoodForNode(true, u);
L += LU;
}
}
return L;
}
| double TCoda::LikelihoodForNode | ( | const bool | IsRow, |
| const int | UID | ||
| ) |
Definition at line 251 of file agmdirected.cpp.
{
if (IsRow) {
return LikelihoodForNode(IsRow, UID, F[UID]);
} else {
return LikelihoodForNode(IsRow, UID, H[UID]);
}
}
| double TCoda::LikelihoodForNode | ( | const bool | IsRow, |
| const int | UID, | ||
| const TIntFltH & | FU | ||
| ) |
Definition at line 259 of file agmdirected.cpp.
{
double L = 0.0;
TFltV HOSumHV; //adjust for Hv of v hold out
if (HOVIDSV[UID].Len() > 0) {
HOSumHV.Gen(NumComs);
for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
for (int c = 0; c < SumHV.Len(); c++) {
HOSumHV[c] += GetCom(! IsRow, HOVIDSV[UID][e], c);
}
}
}
TNGraph::TNodeI NI = G->GetNI(UID);
const int Deg = IsRow ? NI.GetOutDeg(): NI.GetInDeg();
for (int e = 0; e < Deg; e++) {
const int v = IsRow ? NI.GetOutNId(e): NI.GetInNId(e);
if (v == UID) { continue; }
if (HOVIDSV[UID].IsKey(v)) { continue; }
if (IsRow) {
L += log (1.0 - Prediction(FU, H[v])) + NegWgt * DotProduct(FU, H[v]);
} else {
L += log (1.0 - Prediction(F[v], FU)) + NegWgt * DotProduct(F[v], FU);
}
}
for (TIntFltH::TIter HI = FU.BegI(); HI < FU.EndI(); HI++) {
double HOSum = HOVIDSV[UID].Len() > 0? HOSumHV[HI.GetKey()].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
L -= NegWgt * (GetSumVal(! IsRow, HI.GetKey()) - HOSum - GetCom(! IsRow, UID, HI.GetKey())) * HI.GetDat();
}
//add regularization
if (RegCoef > 0.0) { //L1
L -= RegCoef * Sum(FU);
}
if (RegCoef < 0.0) { //L2
L += RegCoef * Norm2(FU);
}
return L;
}
| double TCoda::LikelihoodHoldOut | ( | const bool | DoParallel = false | ) |
Definition at line 841 of file agmdirected.cpp.
| void TCoda::Load | ( | TSIn & | SIn, |
| const int & | RndSeed = 0 |
||
| ) |
Definition at line 25 of file agmdirected.cpp.
| int TCoda::MLEGradAscent | ( | const double & | Thres, |
| const int & | MaxIter, | ||
| const TStr | PlotNm, | ||
| const double | StepAlpha = 0.3, |
||
| const double | StepBeta = 0.1 |
||
| ) |
Definition at line 885 of file agmdirected.cpp.
{
time_t InitTime = time(NULL);
TExeTm ExeTm, CheckTm;
int iter = 0, PrevIter = 0;
TIntFltPrV IterLV;
TNGraph::TNodeI UI;
double PrevL = TFlt::Mn, CurL = 0.0;
TIntV NIdxV(F.Len(), 0);
for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
IAssert(NIdxV.Len() == F.Len());
TIntFltH GradV;
while(iter < MaxIter) {
NIdxV.Shuffle(Rnd);
for (int ui = 0; ui < F.Len(); ui++, iter++) {
const bool IsRow = (ui % 2 == 0);
int u = NIdxV[ui]; //
//find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
UI = G->GetNI(u);
const int Deg = IsRow? UI.GetOutDeg(): UI.GetInDeg();
TIntSet CIDSet(5 * Deg);
for (int e = 0; e < Deg; e++) {
int VID = IsRow? UI.GetOutNId(e): UI.GetInNId(e);
if (HOVIDSV[u].IsKey(VID)) { continue; }
TIntFltH NbhCIDH = IsRow? H[VID]: F[VID];
for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
CIDSet.AddKey(CI.GetKey());
//printf("CI.GetKey:%d\n", CI.GetKey());
IAssert(CI.GetKey() <= NumComs);
}
}
TIntFltH& CurMem = IsRow? F[u]: H[u];
for (TIntFltH::TIter CI = CurMem.BegI(); CI < CurMem.EndI(); CI++) { //remove the community membership which U does not share with its neighbors
if (! CIDSet.IsKey(CI.GetKey())) {
DelCom(IsRow, u, CI.GetKey());
}
}
if (CIDSet.Empty()) { continue; }
GradientForNode(IsRow, u, GradV, CIDSet);
if (Norm2(GradV) < 1e-4) { continue; }
double LearnRate = GetStepSizeByLineSearch(IsRow, u, GradV, GradV, StepAlpha, StepBeta);
if (LearnRate == 0.0) { continue; }
for (int ci = 0; ci < GradV.Len(); ci++) {
int CID = GradV.GetKey(ci);
double Change = LearnRate * GradV.GetDat(CID);
double NewFuc = GetCom(IsRow, u, CID) + Change;
if (NewFuc <= 0.0) {
DelCom(IsRow, u, CID);
} else {
AddCom(IsRow, u, CID, NewFuc);
}
}
if (! PlotNm.Empty() && (iter + 1) % G->GetNodes() == 0) {
IterLV.Add(TIntFltPr(iter, Likelihood(false)));
}
}
printf("\r%d iterations (%f) [%lu sec]", iter, CurL, time(NULL) - InitTime);
fflush(stdout);
if (iter - PrevIter >= 2 * G->GetNodes() && iter > 10000) {
PrevIter = iter;
CurL = Likelihood();
if (PrevL > TFlt::Mn && ! PlotNm.Empty()) {
printf("\r%d iterations, Likelihood: %f, Diff: %f", iter, CurL, CurL - PrevL);
}
fflush(stdout);
if (CurL - PrevL <= Thres * fabs(PrevL)) { break; }
else { PrevL = CurL; }
}
}
printf("\n");
printf("MLE for Lambda completed with %d iterations(%s)\n", iter, ExeTm.GetTmStr());
if (! PlotNm.Empty()) {
TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");
}
return iter;
}
| int TCoda::MLEGradAscentParallel | ( | const double & | Thres, |
| const int & | MaxIter, | ||
| const int | ChunkNum, | ||
| const int | ChunkSize, | ||
| const TStr | PlotNm, | ||
| const double | StepAlpha = 0.3, |
||
| const double | StepBeta = 0.1 |
||
| ) |
Definition at line 962 of file agmdirected.cpp.
{
//parallel
time_t InitTime = time(NULL);
//uint64 StartTm = TSecTm::GetCurTm().GetAbsSecs();
TExeTm ExeTm, CheckTm;
double PrevL = Likelihood(true);
TIntFltPrV IterLV;
int PrevIter = 0;
int iter = 0;
TIntV NIdxV(F.Len(), 0);
for (int i = 0; i < F.Len(); i++) { NIdxV.Add(i); }
TIntV NIDOPTV(F.Len()); //check if a node needs optimization or not 1: does not require optimization
NIDOPTV.PutAll(0);
TVec<TIntFltH> NewF(ChunkNum * ChunkSize);
TIntV NewNIDV(ChunkNum * ChunkSize);
TBoolV IsRowV(ChunkNum * ChunkSize);
for (iter = 0; iter < MaxIter; iter++) {
NIdxV.Clr(false);
for (int i = 0; i < F.Len(); i++) {
//if (NIDOPTV[i] == 0) { NIdxV.Add(i); }
NIdxV.Add(i);
}
IAssert (NIdxV.Len() <= F.Len());
NIdxV.Shuffle(Rnd);
// compute gradient for chunk of nodes
#pragma omp parallel for schedule(static, 1)
for (int TIdx = 0; TIdx < ChunkNum; TIdx++) {
TIntFltH GradV;
for (int ui = TIdx * ChunkSize; ui < (TIdx + 1) * ChunkSize; ui++) {
const bool IsRow = (ui % 2 == 0);
NewNIDV[ui] = -1;
if (ui > NIdxV.Len()) { continue; }
const int u = NIdxV[ui]; //
//find set of candidate c (we only need to consider c to which a neighbor of u belongs to)
TNGraph::TNodeI UI = G->GetNI(u);
const int Deg = IsRow? UI.GetOutDeg(): UI.GetInDeg();
TIntSet CIDSet(5 * Deg);
TIntFltH CurFU = IsRow? F[u]: H[u];
for (int e = 0; e < Deg; e++) {
int VID = IsRow? UI.GetOutNId(e): UI.GetInNId(e);
if (HOVIDSV[u].IsKey(VID)) { continue; }
TIntFltH& NbhCIDH = IsRow? H[VID]: F[VID];
for (TIntFltH::TIter CI = NbhCIDH.BegI(); CI < NbhCIDH.EndI(); CI++) {
CIDSet.AddKey(CI.GetKey());
}
}
if (CIDSet.Empty()) {
CurFU.Clr();
}
else {
for (TIntFltH::TIter CI = CurFU.BegI(); CI < CurFU.EndI(); CI++) { //remove the community membership which U does not share with its neighbors
if (! CIDSet.IsKey(CI.GetKey())) {
CurFU.DelIfKey(CI.GetKey());
}
}
GradientForNode(IsRow, u, GradV, CIDSet);
if (Norm2(GradV) < 1e-4) { NIDOPTV[u] = 1; continue; }
double LearnRate = GetStepSizeByLineSearch(IsRow, u, GradV, GradV, StepAlpha, StepBeta);
if (LearnRate == 0.0) { NewNIDV[ui] = -2; continue; }
for (int ci = 0; ci < GradV.Len(); ci++) {
int CID = GradV.GetKey(ci);
double Change = LearnRate * GradV.GetDat(CID);
double NewFuc = CurFU.IsKey(CID)? CurFU.GetDat(CID) + Change : Change;
if (NewFuc <= 0.0) {
CurFU.DelIfKey(CID);
} else {
CurFU.AddDat(CID) = NewFuc;
}
}
CurFU.Defrag();
}
//store changes
NewF[ui] = CurFU;
NewNIDV[ui] = u;
IsRowV[ui] = IsRow;
}
}
int NumNoChangeGrad = 0;
int NumNoChangeStepSize = 0;
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID == -1) { NumNoChangeGrad++; continue; }
if (NewNID == -2) { NumNoChangeStepSize++; continue; }
if (IsRowV[ui]) {
for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
SumFV[CI.GetKey()] -= CI.GetDat();
}
} else {
for (TIntFltH::TIter CI = H[NewNID].BegI(); CI < H[NewNID].EndI(); CI++) {
SumHV[CI.GetKey()] -= CI.GetDat();
}
}
}
#pragma omp parallel for
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
if (IsRowV[ui]) {
F[NewNID] = NewF[ui];
} else {
H[NewNID] = NewF[ui];
}
}
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
if (IsRowV[ui]) {
for (TIntFltH::TIter CI = F[NewNID].BegI(); CI < F[NewNID].EndI(); CI++) {
SumFV[CI.GetKey()] += CI.GetDat();
}
} else {
for (TIntFltH::TIter CI = H[NewNID].BegI(); CI < H[NewNID].EndI(); CI++) {
SumHV[CI.GetKey()] += CI.GetDat();
}
}
}
// update the nodes who are optimal
for (int ui = 0; ui < NewNIDV.Len(); ui++) {
int NewNID = NewNIDV[ui];
if (NewNID < 0) { continue; }
TNGraph::TNodeI UI = G->GetNI(NewNID);
NIDOPTV[NewNID] = 0;
for (int e = 0; e < UI.GetDeg(); e++) {
NIDOPTV[UI.GetNbrNId(e)] = 0;
}
}
int OPTCnt = 0;
for (int i = 0; i < NIDOPTV.Len(); i++) { if (NIDOPTV[i] == 1) { OPTCnt++; } }
/*
if (! PlotNm.Empty()) {
printf("\r%d iterations [%s] %lu secs", iter * ChunkSize * ChunkNum, ExeTm.GetTmStr(), TSecTm::GetCurTm().GetAbsSecs() - StartTm);
if (PrevL > TFlt::Mn) { printf(" (%f) %d g %d s %d OPT", PrevL, NumNoChangeGrad, NumNoChangeStepSize, OPTCnt); }
fflush(stdout);
}
*/
if ((iter - PrevIter) * ChunkSize * ChunkNum >= G->GetNodes()) {
PrevIter = iter;
double CurL = Likelihood(true);
IterLV.Add(TIntFltPr(iter * ChunkSize * ChunkNum, CurL));
printf("\r%d iterations, Likelihood: %f, Diff: %f [%lu secs]", iter, CurL, CurL - PrevL, time(NULL) - InitTime);
fflush(stdout);
if (CurL - PrevL <= Thres * fabs(PrevL)) {
break;
}
else {
PrevL = CurL;
}
}
}
if (! PlotNm.Empty()) {
printf("\nMLE completed with %d iterations(%lu secs)\n", iter, time(NULL) - InitTime);
TGnuPlot::PlotValV(IterLV, PlotNm + ".likelihood_Q");
} else {
printf("\rMLE completed with %d iterations(%lu secs)\n", iter, time(NULL) - InitTime);
fflush(stdout);
}
return iter;
}
| int TCoda::MLEGradAscentParallel | ( | const double & | Thres, |
| const int & | MaxIter, | ||
| const int | ChunkNum, | ||
| const TStr | PlotNm = TStr(), |
||
| const double | StepAlpha = 0.3, |
||
| const double | StepBeta = 0.1 |
||
| ) | [inline] |
Definition at line 74 of file agmdirected.h.
{
int ChunkSize = G->GetNodes() / 10 / ChunkNum;
if (ChunkSize == 0) { ChunkSize = 1; }
return MLEGradAscentParallel(Thres, MaxIter, ChunkNum, ChunkSize, PlotNm, StepAlpha, StepBeta);
}
| void TCoda::NeighborComInit | ( | const int | InitComs | ) |
Definition at line 83 of file agmdirected.cpp.
{
//initialize with best neighborhood communities (Gleich et.al. KDD'12)
TExeTm RunTm;
TFltIntPrV NIdPhiV(F.Len(), 0);
TAGMFastUtil::GetNIdPhiV<PNGraph>(G, NIdPhiV);
NeighborComInit(NIdPhiV, InitComs);
}
| void TCoda::NeighborComInit | ( | TFltIntPrV & | NIdPhiV, |
| const int | InitComs | ||
| ) |
Definition at line 91 of file agmdirected.cpp.
{
NIdPhiV.Sort(true);
F.Gen(G->GetNodes());
H.Gen(G->GetNodes());
SumFV.Gen(InitComs);
SumHV.Gen(InitComs);
NumComs = InitComs;
//TIntFltH NCPhiH(F.Len());
TIntSet InvalidNIDS(F.Len());
TIntV ChosenNIDV(InitComs, 0); //FOR DEBUG
//choose nodes with local minimum in conductance
int CurCID = 0;
for (int ui = 0; ui < NIdPhiV.Len(); ui++) {
int UID = NIdPhiV[ui].Val2;
fflush(stdout);
if (InvalidNIDS.IsKey(UID)) { continue; }
ChosenNIDV.Add(UID); //FOR DEBUG
//add the node and its neighbors to the current community
TNGraph::TNodeI NI = G->GetNI(UID);
if (NI.GetOutDeg() > 0) { AddComOut(UID, CurCID, 1.0); }
if (NI.GetInDeg() > 0) { AddComIn(UID, CurCID, 1.0); }
fflush(stdout);
//add neighbors depending on whether they have incoming / outgoing edges from the center node (NI)
for (int e = 0; e < NI.GetDeg(); e++) {
int VID = NI.GetNbrNId(e);
TNGraph::TNodeI VI = G->GetNI(VID);
if (VI.GetOutDeg() > 0) { AddComOut(VID, CurCID, 1.0); }
if (VI.GetInDeg() > 0) { AddComIn(VID, CurCID, 1.0); }
}
//exclude its neighbors from the next considerations
for (int e = 0; e < NI.GetDeg(); e++) {
InvalidNIDS.AddKey(NI.GetNbrNId(e));
}
CurCID++;
fflush(stdout);
if (CurCID >= NumComs) { break; }
}
if (NumComs > CurCID) {
printf("%d communities needed to fill randomly\n", NumComs - CurCID);
}
//assign a member to zero-member community (if any)
for (int c = 0; c < SumFV.Len(); c++) {
if (SumFV[c] == 0.0) {
int ComSz = 10;
for (int u = 0; u < ComSz; u++) {
int UID = Rnd.GetUniDevInt(G->GetNodes());
AddComOut(UID, c, Rnd.GetUniDev());
}
}
}
//assign a member to zero-member community (if any)
for (int c = 0; c < SumHV.Len(); c++) {
if (SumHV[c] == 0.0) {
int ComSz = 10;
for (int u = 0; u < ComSz; u++) {
int UID = Rnd.GetUniDevInt(G->GetNodes());
AddComIn(UID, c, Rnd.GetUniDev());
}
}
}
}
| double TCoda::Norm2 | ( | const TIntFltH & | UV | ) | [inline] |
Definition at line 189 of file agmdirected.h.
{
double N = 0.0;
for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
N += HI.GetDat() * HI.GetDat();
}
return N;
}
| double TCoda::Prediction | ( | const TIntFltH & | FU, |
| const TIntFltH & | HV | ||
| ) | [inline] |
Definition at line 174 of file agmdirected.h.
{
double DP = log (1.0 / (1.0 - PNoCom)) + DotProduct(FU, HV);
IAssertR(DP > 0.0, TStr::Fmt("DP: %f", DP));
return exp(- DP);
}
| double TCoda::Prediction | ( | const int & | UID, |
| const int & | VID | ||
| ) | [inline] |
Definition at line 179 of file agmdirected.h.
{
return Prediction(F[UID], H[VID]);
}
| void TCoda::RandomInit | ( | const int | InitComs | ) |
Definition at line 43 of file agmdirected.cpp.
{
F.Gen(G->GetNodes());
H.Gen(G->GetNodes());
SumFV.Gen(InitComs);
SumHV.Gen(InitComs);
NumComs = InitComs;
for (int u = 0; u < F.Len(); u++) {
//assign to just one community
int Mem = G->GetNI(u).GetOutDeg();
if (Mem > 10) { Mem = 10; }
for (int c = 0; c < Mem; c++) {
int CID = Rnd.GetUniDevInt(InitComs);
AddComOut(u, CID, Rnd.GetUniDev());
}
}
for (int u = 0; u < H.Len(); u++) {
//assign to just one community
int Mem = G->GetNI(u).GetInDeg();
if (Mem > 10) { Mem = 10; }
for (int c = 0; c < Mem; c++) {
int CID = Rnd.GetUniDevInt(InitComs);
AddComIn(u, CID, Rnd.GetUniDev());
}
}
//assign a member to zero-member community (if any)
for (int c = 0; c < SumFV.Len(); c++) {
if (SumFV[c] == 0.0) {
int UID = Rnd.GetUniDevInt(G->GetNodes());
AddComOut(UID, c, Rnd.GetUniDev());
}
}
//assign a member to zero-member community (if any)
for (int c = 0; c < SumHV.Len(); c++) {
if (SumHV[c] == 0.0) {
int UID = Rnd.GetUniDevInt(G->GetNodes());
AddComIn(UID, c, Rnd.GetUniDev());
}
}
}
| void TCoda::Save | ( | TSOut & | SOut | ) |
Definition at line 8 of file agmdirected.cpp.
| void TCoda::SetCmtyVV | ( | const TVec< TIntV > & | CmtyVVOut, |
| const TVec< TIntV > & | CmtyVVIn | ||
| ) |
Definition at line 171 of file agmdirected.cpp.
{
IAssert(CmtyVVOut.Len() == CmtyVVIn.Len());
F.Gen(G->GetNodes());
H.Gen(G->GetNodes());
SumFV.Gen(CmtyVVOut.Len());
SumHV.Gen(CmtyVVIn.Len());
NumComs = CmtyVVOut.Len();
TIntH NIDIdxH(NIDV.Len());
if (! NodesOk) {
for (int u = 0; u < NIDV.Len(); u++) {
NIDIdxH.AddDat(NIDV[u], u);
}
}
for (int c = 0; c < CmtyVVOut.Len(); c++) {
for (int u = 0; u < CmtyVVOut[c].Len(); u++) {
int UID = CmtyVVOut[c][u];
if (! NodesOk) { UID = NIDIdxH.GetDat(UID); }
if (G->IsNode(UID)) {
AddComOut(UID, c, 1.0);
}
}
}
for (int c = 0; c < CmtyVVIn.Len(); c++) {
for (int u = 0; u < CmtyVVIn[c].Len(); u++) {
int UID = CmtyVVIn[c][u];
if (! NodesOk) { UID = NIDIdxH.GetDat(UID); }
if (G->IsNode(UID)) {
AddComIn(UID, c, 1.0);
}
}
}
}
| void TCoda::SetGraph | ( | const PNGraph & | GraphPt | ) |
Definition at line 204 of file agmdirected.cpp.
{
G = GraphPt;
HOVIDSV.Gen(G->GetNodes());
NodesOk = true;
GraphPt->GetNIdV(NIDV);
// check that nodes IDs are {0,1,..,Nodes-1}
for (int nid = 0; nid < GraphPt->GetNodes(); nid++) {
if (! GraphPt->IsNode(nid)) {
NodesOk = false;
break;
}
}
if (! NodesOk) {
printf("rearrage nodes\n");
G = TSnap::GetSubGraph(GraphPt, NIDV, true);
for (int nid = 0; nid < G->GetNodes(); nid++) {
IAssert(G->IsNode(nid));
}
}
TSnap::DelSelfEdges(G);
PNoCom = 1.0 / (double) G->GetNodes();
DoParallel = false;
if (1.0 / PNoCom > sqrt(TFlt::Mx)) { PNoCom = 0.99 / sqrt(TFlt::Mx); } // to prevent overflow
NegWgt = 1.0;
}
| void TCoda::SetHoldOut | ( | const double | HOFrac | ) | [inline] |
Definition at line 54 of file agmdirected.h.
{ TVec<TIntSet> HoldOut; TAGMFastUtil::GenHoldOutPairs(G, HoldOut, HOFrac, Rnd); HOVIDSV = HoldOut; }
| void TCoda::SetRegCoef | ( | const double | _RegCoef | ) | [inline] |
Definition at line 33 of file agmdirected.h.
{ RegCoef = _RegCoef; }
| double TCoda::Sum | ( | const TIntFltH & | UV | ) | [inline] |
Definition at line 182 of file agmdirected.h.
{
double N = 0.0;
for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
N += HI.GetDat();
}
return N;
}
Definition at line 25 of file agmdirected.h.
Definition at line 10 of file agmdirected.h.
Definition at line 9 of file agmdirected.h.
Definition at line 11 of file agmdirected.h.
TVec<TIntSet> TCoda::HOVIDSV [private] |
Definition at line 19 of file agmdirected.h.
Definition at line 22 of file agmdirected.h.
Definition at line 21 of file agmdirected.h.
Definition at line 23 of file agmdirected.h.
TIntV TCoda::NIDV [private] |
Definition at line 13 of file agmdirected.h.
TBool TCoda::NodesOk [private] |
Definition at line 17 of file agmdirected.h.
TInt TCoda::NumComs [private] |
Definition at line 18 of file agmdirected.h.
Definition at line 24 of file agmdirected.h.
TFlt TCoda::RegCoef [private] |
Definition at line 14 of file agmdirected.h.
TRnd TCoda::Rnd [private] |
Definition at line 12 of file agmdirected.h.
TFltV TCoda::SumFV [private] |
Definition at line 15 of file agmdirected.h.
TFltV TCoda::SumHV [private] |
Definition at line 16 of file agmdirected.h.