SNAP Library 2.2, Developer Reference
2014-03-11 19:15:55
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
|
#include <xmath.h>
Static Public Member Functions | |
static void | GammaPSeries (double &gamser, const double &a, const double &x, double &gln) |
static void | GammaQContFrac (double &gammcf, const double &a, const double &x, double &gln) |
static double | GammaQ (const double &a, const double &x) |
static double | LnGamma (const double &xx) |
static double | BetaCf (const double &a, const double &b, const double &x) |
static double | BetaI (const double &a, const double &b, const double &x) |
static void | LinearFit (const TVec< TFltPr > &XY, double &A, double &B, double &SigA, double &SigB, double &Chi2, double &R2) |
static void | PowerFit (const TVec< TFltPr > &XY, double &A, double &B, double &SigA, double &SigB, double &Chi2, double &R2) |
static void | LogFit (const TVec< TFltPr > &XY, double &A, double &B, double &SigA, double &SigB, double &Chi2, double &R2) |
static void | ExpFit (const TVec< TFltPr > &XY, double &A, double &B, double &SigA, double &SigB, double &Chi2, double &R2) |
static double | LnComb (const int &n, const int &k) |
static double | Entropy (const TIntV &ValV) |
static double | Entropy (const TFltV &ValV) |
static void | EntropyFracDim (const TIntV &ValV, TFltV &EntropyV) |
static void | EntropyFracDim (const TFltV &ValV, TFltV &EntropyV) |
static double | EntropyBias (const double &B) |
static double | GetPowerCoef (const TFltV &XValV, double MinX=-1.0) |
static double | GetPowerCoef (const TFltPrV &XValCntV, double MinX=-1.0) |
double TSpecFunc::BetaCf | ( | const double & | a, |
const double & | b, | ||
const double & | x | ||
) | [static] |
Definition at line 99 of file xmath.cpp.
References Fail.
Referenced by BetaI().
{ static const double MAXIT=100; static const double EPS=3.0e-7; static const double FPMIN=1.0e-30; int m,m2; double aa,c,d,del,h,qab,qam,qap; qab=a+b; qap=a+1.0; qam=a-1.0; c=1.0; d=1.0-qab*x/qap; if (fabs(d) < FPMIN) d=FPMIN; d=1.0/d; h=d; for (m=1;m<=MAXIT;m++) { m2=2*m; aa=m*(b-m)*x/((qam+m2)*(a+m2)); d=1.0+aa*d; if (fabs(d) < FPMIN) d=FPMIN; c=1.0+aa/c; if (fabs(c) < FPMIN) c=FPMIN; d=1.0/d; h *= d*c; aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2)); d=1.0+aa*d; if (fabs(d) < FPMIN) d=FPMIN; c=1.0+aa/c; if (fabs(c) < FPMIN) c=FPMIN; d=1.0/d; del=d*c; h *= del; if (fabs(del-1.0) < EPS) break; } if (m > MAXIT){Fail;}// a or b too big, or MAXIT too small in betacf return h; }
double TSpecFunc::BetaI | ( | const double & | a, |
const double & | b, | ||
const double & | x | ||
) | [static] |
Definition at line 137 of file xmath.cpp.
References BetaCf(), Fail, and LnGamma().
Referenced by TCorr::TCorr(), and TStatTest::TTest().
{ double bt; if (x < 0.0 || x > 1.0){Fail;} // Bad x in routine betai if (x == 0.0 || x == 1.0) bt=0.0; else bt=exp(LnGamma(a+b)-LnGamma(a)-LnGamma(b)+a*log(x)+b*log(1.0-x)); if (x < (a+1.0)/(a+b+2.0)) return bt*BetaCf(a,b,x)/a; else return 1.0-bt*BetaCf(b,a,1.0-x)/b; }
double TSpecFunc::Entropy | ( | const TIntV & | ValV | ) | [static] |
Definition at line 231 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Len().
Referenced by EntropyFracDim().
{ TFltV NewValV(ValV.Len()); for (int i = 0; i < ValV.Len(); i++) { NewValV[i] = ValV[i]; } return Entropy(NewValV); }
double TSpecFunc::Entropy | ( | const TFltV & | ValV | ) | [static] |
Definition at line 238 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Len(), and TMath::LogOf2.
{ double Sum=0, Ent=0; for (int i = 0; i < ValV.Len(); i++) { const double& Val = ValV[i]; if (Val > 0.0) { Ent -= Val * log(Val); Sum += Val; } } if (Sum > 0.0) { Ent /= Sum; Ent += log(Sum); Ent /= TMath::LogOf2; } else return 1.0; return Ent; }
double TSpecFunc::EntropyBias | ( | const double & | B | ) | [static] |
Definition at line 285 of file xmath.cpp.
References THash< TKey, TDat, THashFunc >::AddDat(), THash< TKey, TDat, THashFunc >::Empty(), THash< TKey, TDat, THashFunc >::GetDat(), THash< TKey, TDat, THashFunc >::IsKey(), and TMath::Round().
{ static TFltFltH BToP; if (BToP.Empty()) { for (double p = 0.5; p < 1.0; p +=0.0001) { double H = p * log(p) + (1.0-p) * log(1.0 - p); H = -H / log(2.0); BToP.AddDat(TMath::Round(H, 3), p); } } if (BToP.IsKey(TMath::Round(B, 3))) { return BToP.GetDat(TMath::Round(B, 3)); } else { return -1.0; } }
void TSpecFunc::EntropyFracDim | ( | const TIntV & | ValV, |
TFltV & | EntropyV | ||
) | [static] |
Definition at line 252 of file xmath.cpp.
References IAssert, and TVec< TVal, TSizeTy >::Len().
{ TFltV NewValV(ValV.Len()); for (int i = 0; i < ValV.Len(); i++) { IAssert(ValV[i]==1 || ValV[i] == 0); NewValV[i] = ValV[i]; } EntropyFracDim(NewValV, EntropyV); }
void TSpecFunc::EntropyFracDim | ( | const TFltV & | ValV, |
TFltV & | EntropyV | ||
) | [static] |
Definition at line 264 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Add(), TVec< TVal, TSizeTy >::Clr(), Entropy(), TVec< TVal, TSizeTy >::Gen(), IAssert, TVec< TVal, TSizeTy >::Len(), TVec< TVal, TSizeTy >::MoveFrom(), and TVec< TVal, TSizeTy >::Reverse().
{ TFltV ValV1, ValV2; int Pow2 = 1; while (2*Pow2 <= ValV.Len()) { Pow2 *= 2; } ValV1.Gen(Pow2); for (int i = 0; i < Pow2; i++) { ValV1[i] = ValV[i]; IAssert(ValV[i]==1.0 || ValV[i] == 0.0); } EntropyV.Clr(); EntropyV.Add(Entropy(ValV1)); // 2^Pow2 windows while (ValV1.Len() > 2) { ValV2.Gen(ValV1.Len() / 2); for (int i = 0; i < ValV1.Len(); i++) { ValV2[i/2] += ValV1[i]; } EntropyV.Add(Entropy(ValV2)); ValV1.MoveFrom(ValV2); } EntropyV.Reverse(); }
void TSpecFunc::ExpFit | ( | const TVec< TFltPr > & | XY, |
double & | A, | ||
double & | B, | ||
double & | SigA, | ||
double & | SigB, | ||
double & | Chi2, | ||
double & | R2 | ||
) | [static] |
Definition at line 218 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Add(), TVec< TVal, TSizeTy >::Len(), and LinearFit().
Referenced by TGnuPlot::AddExpFit().
{ // Y = A * exp(B*X) TFltPrV XLogY(XY.Len(), 0); double AA, BB; for (int s = 0; s < XY.Len(); s++) { XLogY.Add(TFltPr(XY[s].Val1, log((double)XY[s].Val2))); } TSpecFunc::LinearFit(XLogY, AA, BB, SigA, SigB, Chi2, R2); A = exp(AA); B = BB; }
void TSpecFunc::GammaPSeries | ( | double & | gamser, |
const double & | a, | ||
const double & | x, | ||
double & | gln | ||
) | [static] |
Definition at line 9 of file xmath.cpp.
{ static const int ITMAX=100; static const double EPS=3.0e-7; int n; double sum, del, ap; gln=LnGamma(a); if (x <= 0.0){ IAssert(x>=0); /*if (x < 0.0) nrerror("x less than 0 in routine gser");*/ gamser=0.0; return; } else { ap=a; del=sum=1.0/a; for (n=1; n<=ITMAX; n++){ ++ap; del *= x/ap; sum += del; if (fabs(del) < fabs(sum)*EPS){ gamser=sum*exp(-x+a*log(x)-(gln)); return; } } Fail; /*nrerror("a too large, ITMAX too small in routine gser");*/ return; } }
double TSpecFunc::GammaQ | ( | const double & | a, |
const double & | x | ||
) | [static] |
Definition at line 68 of file xmath.cpp.
References IAssert.
Referenced by TStatTest::ChiSquareOne(), and TStatTest::ChiSquareTwo().
{ IAssert((x>=0)&&(a>0)); double gamser, gammcf, gln; if (x<(a+1.0)){ GammaPSeries(gamser,a,x,gln); return 1.0-gamser; } else { GammaQContFrac(gammcf,a,x,gln); return gammcf; } }
void TSpecFunc::GammaQContFrac | ( | double & | gammcf, |
const double & | a, | ||
const double & | x, | ||
double & | gln | ||
) | [static] |
Definition at line 38 of file xmath.cpp.
References IAssert.
{ static const int ITMAX=100; static const double EPS=3.0e-7; static const double FPMIN=1.0e-30; int i; double an, b, c, d, del, h; gln=LnGamma(a); b=x+1.0-a; c=1.0/FPMIN; d=1.0/b; h=d; for (i=1;i<=ITMAX;i++){ an = -i*(i-a); b += 2.0; d=an*d+b; if (fabs(d) < FPMIN) d=FPMIN; c=b+an/c; if (fabs(c) < FPMIN) c=FPMIN; d=1.0/d; del=d*c; h *= del; if (fabs(del-1.0) < EPS) break; } IAssert(i<=ITMAX); /*if (i > ITMAX) nrerror("a too large, ITMAX too small in gcf");*/ gammcf=exp(-x+a*log(x)-(gln))*h; }
double TSpecFunc::GetPowerCoef | ( | const TFltV & | XValV, |
double | MinX = -1.0 |
||
) | [static] |
Definition at line 299 of file xmath.cpp.
References IAssert, and TVec< TVal, TSizeTy >::Len().
Referenced by TGnuPlot::AddPwrFit2().
{ for (int i = 0; MinX <= 0.0 && i < XValV.Len(); i++) { MinX = XValV[i]; } IAssert(MinX > 0.0); double LnSum=0.0; for (int i = 0; i < XValV.Len(); i++) { if (XValV[i].Val < MinX) continue; LnSum += log(XValV[i] / MinX); } return 1.0 + double(XValV.Len()) / LnSum; }
double TSpecFunc::GetPowerCoef | ( | const TFltPrV & | XValCntV, |
double | MinX = -1.0 |
||
) | [static] |
Definition at line 311 of file xmath.cpp.
References IAssert, and TVec< TVal, TSizeTy >::Len().
{ for (int i = 0; MinX <= 0.0 && i < XValCntV.Len(); i++) { MinX = XValCntV[i].Val1; } IAssert(MinX > 0.0); double NSamples=0.0, LnSum=0.0; for (int i = 0; i < XValCntV.Len(); i++) { if (XValCntV[i].Val1() < MinX) continue; LnSum += XValCntV[i].Val2 * log(XValCntV[i].Val1 / MinX); NSamples += XValCntV[i].Val2; } return 1.0 + NSamples / LnSum; }
void TSpecFunc::LinearFit | ( | const TVec< TFltPr > & | XY, |
double & | A, | ||
double & | B, | ||
double & | SigA, | ||
double & | SigB, | ||
double & | Chi2, | ||
double & | R2 | ||
) | [static] |
Definition at line 150 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Len(), and TMath::Sqr().
Referenced by TGnuPlot::AddLinFit(), ExpFit(), LogFit(), and PowerFit().
{ // y = a + bx :: SigA (SigB): A's uncertainty; Chi2: std dev on all points int i; double t, sxoss, sx = 0.0, sy = 0.0, st2 = 0.0, ss, sigdat; A = B = SigA = SigB = Chi2 = 0.0; for (i = 0; i < XY.Len(); i++) { sx += XY[i].Val1; sy += XY[i].Val2; } ss = XY.Len(); sxoss = sx / ss; for (i = 0; i <XY.Len(); i++) { t = XY[i].Val1 - sxoss; st2 += t*t; B += t * XY[i].Val2; } B /= st2; A = (sy - sx * B) / ss; SigA = sqrt((1.0 + sx * sx / (ss * st2)) / ss); SigB = sqrt(1.0 / st2); for (i = 0; i < XY.Len(); i++) Chi2 += TMath::Sqr(XY[i].Val2 - A - B * XY[i].Val1); sigdat = sqrt(Chi2 / (XY.Len() - 2)); SigA *= sigdat; SigB *= sigdat; // calculate R squared { double N = XY.Len(), sXY=0.0, sX=0.0, sY=0.0, sSqX=0.0, sSqY=0.0; for (int s =0; s < XY.Len(); s++) { sX += XY[s].Val1; sY += XY[s].Val2; sXY += XY[s].Val1 * XY[s].Val2; sSqX += TMath::Sqr(XY[s].Val1); sSqY += TMath::Sqr(XY[s].Val2); } R2 = TMath::Sqr(N*sXY - sX*sY) / ((N*sSqX - sX*sX) * (N*sSqY - sY*sY)); } if (1.1 < R2 || -1.1 > R2) R2 = 0.0; if (_isnan(A) || ! _finite(A)) A = 0.0; if (_isnan(B) || ! _finite(B)) B = 0.0; }
double TSpecFunc::LnComb | ( | const int & | n, |
const int & | k | ||
) | [static] |
double TSpecFunc::LnGamma | ( | const double & | xx | ) | [static] |
Definition at line 80 of file xmath.cpp.
Referenced by BetaI(), TRnd::GetBinomialDev(), TRnd::GetPoissonDev(), and LnComb().
{ double x, y, tmp, ser; static double cof[6]={76.18009172947146,-86.50532032941677, 24.01409824083091,-1.231739572450155, 0.1208650973866179e-2,-0.5395239384953e-5}; int j; y=x=xx; tmp=x+5.5; tmp -= (x+0.5)*log(tmp); ser=1.000000000190015; for (j=0;j<=5;j++) ser += cof[j]/++y; return -tmp+log(2.5066282746310005*ser/x); }
void TSpecFunc::LogFit | ( | const TVec< TFltPr > & | XY, |
double & | A, | ||
double & | B, | ||
double & | SigA, | ||
double & | SigB, | ||
double & | Chi2, | ||
double & | R2 | ||
) | [static] |
Definition at line 208 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Add(), TVec< TVal, TSizeTy >::Len(), and LinearFit().
Referenced by TGnuPlot::AddLogFit().
{ // Y = A + B*log(X) TFltPrV LogXY(XY.Len(), 0); for (int s = 0; s < XY.Len(); s++) { LogXY.Add(TFltPr(log((double)XY[s].Val1), XY[s].Val2)); } TSpecFunc::LinearFit(LogXY, A, B, SigA, SigB, Chi2, R2); }
void TSpecFunc::PowerFit | ( | const TVec< TFltPr > & | XY, |
double & | A, | ||
double & | B, | ||
double & | SigA, | ||
double & | SigB, | ||
double & | Chi2, | ||
double & | R2 | ||
) | [static] |
Definition at line 193 of file xmath.cpp.
References TVec< TVal, TSizeTy >::Add(), TVec< TVal, TSizeTy >::Len(), and LinearFit().
Referenced by TGnuPlot::AddPwrFit1(), TGnuPlot::AddPwrFit2(), and TGnuPlot::AddPwrFit3().
{ // y = a x^b :: SigA (SigB): A's uncertainty; Chi2: std dev on all points // log fit double AA, BB; TFltPrV LogXY(XY.Len(), 0); for (int s = 0; s < XY.Len(); s++) { LogXY.Add(TFltPr(log((double)XY[s].Val1), log((double)XY[s].Val2))); } TSpecFunc::LinearFit(LogXY, AA, BB, SigA, SigB, Chi2, R2); A = exp(AA); B = BB; if (_isnan(AA) || ! _finite(AA)) A = 0.0; if (_isnan(BB) || ! _finite(BB)) B = 0.0; }