SNAP Library , Developer Reference  2013-01-07 14:03:36
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
TKronMomentsFit Class Reference

#include <kronecker.h>

List of all members.

Public Member Functions

 TKronMomentsFit (const PUNGraph &G)
TFltQu EstABC (const int &R)

Static Public Member Functions

static void Test ()

Public Attributes

double Edges
double Hairpins
double Tripins
double Triads

Detailed Description

Definition at line 303 of file kronecker.h.


Constructor & Destructor Documentation

TKronMomentsFit::TKronMomentsFit ( const PUNGraph G) [inline]

Definition at line 307 of file kronecker.h.

References TUNGraph::BegNI(), Edges, TUNGraph::EndNI(), TSnap::GetTriads(), Hairpins, Triads, and Tripins.

                                     {
    Edges=0; Hairpins=0; Tripins=0; Triads=0;
    for (TUNGraph::TNodeI NI = G->BegNI(); NI < G->EndNI(); NI++) {
      const int d = NI.GetOutDeg();
      Edges += d;
      Hairpins += d*(d-1.0);
      Tripins += d*(d-1.0)*(d-2.0);
    }
    Edges /= 2.0;
    Hairpins /= 2.0;
    Tripins /= 6.0;
    int ot,ct;
    Triads = TSnap::GetTriads(G, ot, ct)/3.0;
    printf("E:%g\tH:%g\tT:%g\tD:%g\n", Edges, Hairpins, Tripins, Triads);
  }

Here is the call graph for this function:


Member Function Documentation

TFltQu TKronMomentsFit::EstABC ( const int &  R) [inline]

Definition at line 323 of file kronecker.h.

References Edges, Hairpins, TMath::IsInEps(), TFlt::Mx, Triads, and Tripins.

Referenced by Test().

                              {
    const double Step = 0.01;
    double MinScore=TFlt::Mx;
    double A=0, B=0, C=0;
    //Edges=log(Edges);  Hairpins=log(Hairpins);  Tripins=log(Tripins);  Triads=log(Triads);
    for (double a = 1.0; a > Step; a-=Step) {
      for (double b = Step; b <= 1.0; b+=Step) {
        for (double c = Step; c <= a; c+=Step) {
          double EE = ( pow(a+2*b+c, R) - pow(a+c, R) ) / 2.0;
          double EH = ( pow(pow(a+b,2) + pow(b+c,2), R)
                             -2*pow(a*(a+b)+c*(c+b), R)
                             -pow(a*a + 2*b*b + c*c, R)
                             +2*pow(a*a + c*c, R) ) / 2.0;
          double ET = ( pow(pow(a+b,3)+pow(b+c,3), R)
                             -3*pow(a*pow(a+b,2)+c*pow(b+c,2), R)
                             -3*pow(a*a*a + c*c*c + b*(a*a+c*c) + b*b*(a+c) + 2*b*b*b ,R)
                             +2*pow(a*a*a + 2*b*b*b + c*c*c, R)
                             +5*pow(a*a*a + c*c*c + b*b*(a+c), R)
                             +4*pow(a*a*a + c*c*c + b*(a*a+c*c), R)
                             -6*pow(a*a*a + c*c*c, R) ) / 6.0;
          double ED = ( pow(a*a*a + 3*b*b*(a+c) + c*c*c, R)
                             -3*pow(a*(a*a+b*b) + c*(b*b+c*c), R)
                             +2*pow(a*a*a+c*c*c, R) ) / 6.0;
          if (EE < 0) { EE = 1; }
          if (EH < 0) { EH = 1; }
          if (ET < 0) { ET = 1; }
          if (ED < 0) { ED = 1; }
          //EE=log(EE); EH=log(EH); ET=log(ET); ED=log(ED);
          double Score = pow(Edges-EE,2)/EE + pow(Hairpins-EH ,2)/EH + pow(Tripins-ET, 2)/ET + pow(Triads-ED, 2)/ED;
          //double Score = fabs(Edges-EE)/EE + fabs(Hairpins-EH)/EH + fabs(Tripins-ET)/ET + fabs(Triads-ED)/ED;
          //double Score = log(pow(Edges-EE,2)/EE) + log(pow(Hairpins-EH,2)/EH) + log(pow(Tripins-ET, 2)/ET) + log(pow(Triads-ED, 2)/ED);
          if (MinScore > Score || (a==0.9 && b==0.6 && c==0.2) || (TMath::IsInEps(a-0.99,1e-6) && TMath::IsInEps(b-0.57,1e-6) && TMath::IsInEps(c-0.05,1e-6)))
          {
            printf("%.03f %.03f %0.03f %10.4f  %10.10g\t%10.10g\t%10.10g\t%10.10g\n", a,b,c, log10(Score), EE, EH, ET, ED);
            //printf("%.03f %.03f %0.03f %g\n", a,b,c, log(Score));
            A=a; B=b; C=c; MinScore=Score;
          }
        }
      }
    }
    printf("\t\t\t      %10.10g\t%10.10g\t%10.10g\t%10.10g\n", Edges, Hairpins, Tripins, Triads);
    return TFltQu(A,B,C,MinScore);
  }

Here is the call graph for this function:

Here is the caller graph for this function:

static void TKronMomentsFit::Test ( ) [inline, static]

Definition at line 367 of file kronecker.h.

References TSnap::DelSelfEdges(), EstABC(), TKronMtx::GetKronIter(), TUNGraph::GetNodes(), TNGraph::Load(), and TSnap::PrintInfo().

                     {
    TFIn FIn("as20.ngraph");
    PUNGraph G = TSnap::ConvertGraph<PUNGraph>(TNGraph::Load(FIn));
    //PUNGraph G = TKronMtx::GenFastKronecker(TKronMtx::GetMtx("0.9, 0.6; 0.6, 0.2"), 14, false, 0)->GetUNGraph();
    //PUNGraph G = TUNGraph::GetSmallGraph();
    TSnap::PrintInfo(G);
    TSnap::DelSelfEdges(G);
    TSnap::PrintInfo(G);
    TKronMomentsFit Fit(G);
    printf("iter %d\n", TKronMtx::GetKronIter(G->GetNodes(), 2));
    Fit.EstABC(TKronMtx::GetKronIter(G->GetNodes(), 2)); //*/
  }

Here is the call graph for this function:


Member Data Documentation

Definition at line 305 of file kronecker.h.

Referenced by EstABC(), and TKronMomentsFit().

Definition at line 305 of file kronecker.h.

Referenced by EstABC(), and TKronMomentsFit().

Definition at line 305 of file kronecker.h.

Referenced by EstABC(), and TKronMomentsFit().

Definition at line 305 of file kronecker.h.

Referenced by EstABC(), and TKronMomentsFit().


The documentation for this class was generated from the following file: