SNAP Library 2.2, Developer Reference  2014-03-11 19:15:55
SNAP, a general purpose, high performance system for analysis and manipulation of large networks
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
agmattr.h
Go to the documentation of this file.
00001 #ifndef yanglib_agmattr1_h
00002 #define yanglib_agmattr1_h
00003 #include "Snap.h"
00004 
00005 class TCesnaUtil {
00006 public:
00007   //static double GetConductance(const PUNGraph& Graph, const TIntSet& CmtyS, const int Edges);
00008   //static double GetConductance(const PNGraph& Graph, const TIntSet& CmtyS, const int Edges);
00009 template<class PGraph>
00010 static double GetConductance(const PGraph& Graph, const TIntSet& CmtyS, const int Edges) {
00011   const bool GraphType = HasGraphFlag(typename PGraph::TObj, gfDirected);
00012   int Edges2;
00013   if (GraphType) { Edges2 = Edges >= 0 ? Edges : Graph->GetEdges(); }
00014   else { Edges2 = Edges >= 0 ? 2 * Edges : Graph->GetEdges(); }
00015   int Vol = 0,  Cut = 0; 
00016   double Phi = 0.0;
00017   for (int i = 0; i < CmtyS.Len(); i++) {
00018     if (! Graph->IsNode(CmtyS[i])) { continue; }
00019     typename PGraph::TObj::TNodeI  NI = Graph->GetNI(CmtyS[i]);
00020     for (int e = 0; e < NI.GetOutDeg(); e++) {
00021       if (! CmtyS.IsKey(NI.GetOutNId(e))) { Cut += 1; }
00022     }
00023     Vol += NI.GetOutDeg();
00024   }
00025   // get conductance
00026   if (Vol != Edges2) {
00027     if (2 * Vol > Edges2) { Phi = Cut / double (Edges2 - Vol); }
00028     else if (Vol == 0) { Phi = 0.0; }
00029     else { Phi = Cut / double(Vol); }
00030   } else {
00031     if (Vol == Edges2) { Phi = 1.0; }
00032   }
00033   return Phi;
00034 }
00035 
00036 
00037 template<class PGraph>
00038   static void GenHoldOutPairs(const PGraph& G, TVec<TIntSet>& HoldOutSet, double HOFrac, TRnd& Rnd)  {
00039     TIntPrV EdgeV(G->GetEdges(), 0);
00040     for (typename PGraph::TObj::TEdgeI EI = G->BegEI(); EI < G->EndEI(); EI++) {
00041       EdgeV.Add(TIntPr(EI.GetSrcNId(), EI.GetDstNId()));
00042     }
00043     EdgeV.Shuffle(Rnd);
00044 
00045     const bool GraphType = HasGraphFlag(typename PGraph::TObj, gfDirected);
00046     HoldOutSet.Gen(G->GetNodes());
00047     int HOTotal = int(HOFrac * G->GetNodes() * (G->GetNodes() - 1) / 2.0);
00048     if (GraphType) { HOTotal *= 2;}
00049     int HOCnt = 0;
00050     int HOEdges = (int) TMath::Round(HOFrac * G->GetEdges());
00051     printf("holding out %d edges...\n", HOEdges);
00052     for (int he = 0; he < (int) HOEdges; he++) {
00053       HoldOutSet[EdgeV[he].Val1].AddKey(EdgeV[he].Val2);
00054       if (! GraphType) { HoldOutSet[EdgeV[he].Val2].AddKey(EdgeV[he].Val1); }
00055       HOCnt++;
00056     }
00057     printf("%d Edges hold out\n", HOCnt);
00058     while(HOCnt++ < HOTotal) {
00059       int SrcNID = Rnd.GetUniDevInt(G->GetNodes());
00060       int DstNID = Rnd.GetUniDevInt(G->GetNodes());
00061       if (SrcNID == DstNID) { continue; }
00062       HoldOutSet[SrcNID].AddKey(DstNID);
00063       if (! GraphType) { HoldOutSet[DstNID].AddKey(SrcNID); }
00064     }
00065   }
00066 
00067 template<class PGraph>
00068   static void GetNbhCom(const PGraph& Graph, const int NID, TIntSet& NBCmtyS) {
00069     typename PGraph::TObj::TNodeI NI = Graph->GetNI(NID);
00070     NBCmtyS.Gen(NI.GetDeg());
00071     NBCmtyS.AddKey(NID);
00072     for (int e = 0; e < NI.GetDeg(); e++) {
00073       NBCmtyS.AddKey(NI.GetNbrNId(e));
00074     }
00075   }
00076 template<class PGraph>
00077   static void GetNIdPhiV(const PGraph& G, TFltIntPrV& NIdPhiV) {
00078     NIdPhiV.Gen(G->GetNodes(), 0);
00079     const int Edges = G->GetEdges();
00080     TExeTm RunTm;
00081     //compute conductance of neighborhood community
00082     for (typename PGraph::TObj::TNodeI NI = G->BegNI(); NI < G->EndNI(); NI++) {
00083       TIntSet NBCmty(NI.GetDeg() + 1);
00084       double Phi;
00085       if (NI.GetDeg() < 5) { //do not include nodes with too few degree
00086         Phi = 1.0; 
00087       } else {
00088         TCesnaUtil::GetNbhCom<PGraph>(G, NI.GetId(), NBCmty);
00089         //if (NBCmty.Len() != NI.GetDeg() + 1) { printf("NbCom:%d, Deg:%d\n", NBCmty.Len(), NI.GetDeg()); }
00090         //IAssert(NBCmty.Len() == NI.GetDeg() + 1);
00091         Phi = TCesnaUtil::GetConductance(G, NBCmty, Edges);
00092       }
00093       //NCPhiH.AddDat(u, Phi);
00094       NIdPhiV.Add(TFltIntPr(Phi, NI.GetId()));
00095     }
00096     printf("conductance computation completed [%s]\n", RunTm.GetTmStr());
00097     fflush(stdout);
00098   }
00099 
00100   static void LoadNIDAttrHFromNIDKH(const TIntV& NIDV, const TStr& InFNm, THash<TInt, TIntV>& NIDAttrH, const TStrHash<TInt>& NodeNameH, const TSsFmt Sep = ssfTabSep) {
00101     NIDAttrH.Clr();
00102     NIDAttrH.Gen(NIDV.Len());
00103     for (int u = 0; u < NIDV.Len(); u++) { NIDAttrH.AddDat(NIDV[u]).Gen(0, 0); }
00104     TSsParser Ss(InFNm, ssfTabSep);
00105     while (Ss.Next()) {
00106       TStr NodeName = Ss.GetFld(0);
00107       TInt NID = NodeName.GetInt();
00108       if (NodeNameH.Len() > 0 && ! NodeNameH.IsKey(NodeName)) { continue; }
00109       if (NodeNameH.Len() > 0) { 
00110         IAssertR(NodeNameH.IsKey(NodeName), TStr::Fmt("NodeName:%s", NodeName.CStr())); 
00111         NID = NodeNameH.GetKeyId(NodeName);
00112       }
00113       if (! NIDAttrH.IsKey(NID)) { continue; } //ignore nodes who are not in the graph
00114       IAssertR(! NIDAttrH.GetDat(NID).IsIn(Ss.GetInt(1)), TStr::Fmt("NIdx:%d NID:%s, K:%d", NID.Val, NodeName.CStr(), Ss.GetInt(1)));
00115       NIDAttrH.GetDat(NID).Add(Ss.GetInt(1));
00116     }
00117     printf("%s nodes, %s lines read \n",  TUInt64::GetStr(NIDAttrH.Len()).CStr(), TUInt64::GetStr(Ss.GetLineNo()).CStr());
00118     //printf("%d nodes, %d lines read \n",  NIDAttrH.Len(), Ss.GetLineNo());
00119   }
00120   static void LoadNIDAttrHFromNIDKH(const TIntV& NIDV, const TStr& InFNm, THash<TInt, TIntV>& NIDAttrH) {
00121     TStrHash<TInt> TmpH;
00122     LoadNIDAttrHFromNIDKH(NIDV, InFNm, NIDAttrH, TmpH);
00123   }
00124   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntSet>& NIDAttrH, const TStrHash<TInt>& FeatNameH, const TStrHash<TInt>& NodeNameH) {
00125     FILE* F = fopen(FNm.CStr(), "wt");
00126     for (int u = 0; u < NIDAttrH.Len(); u++) {
00127       int NID = NIDAttrH.GetKey(u);
00128       TStr NodeName = NodeNameH.IsKeyId(NID)? NodeNameH.GetKey(NID): TStr::Fmt("%d", NID);
00129       for (int k = 0; k < NIDAttrH[u].Len(); k++) {
00130         int KID = NIDAttrH[u][k];
00131         TStr FeatName = FeatNameH.IsKeyId(KID)? FeatNameH.GetKey(KID): TStr::Fmt("%d", KID);
00132         fprintf(F,"%s\t%s\n", NodeName.CStr(), FeatName.CStr());
00133       }
00134     }
00135     fclose(F);
00136   }
00137   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntSet>& NIDAttrH, const TStrHash<TInt>& FeatNameH) {
00138     TStrHash<TInt> TmpH;
00139     DumpNIDAttrHToNIDK(FNm, NIDAttrH, FeatNameH, TmpH);
00140   }
00141   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntSet>& NIDAttrH) {
00142     TStrHash<TInt> TmpH1, TmpH2;
00143     DumpNIDAttrHToNIDK(FNm, NIDAttrH, TmpH1, TmpH2);
00144   }
00145   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntV>& NIDAttrH, const TStrHash<TInt>& FeatNameH, const TStrHash<TInt>& NodeNameH) {
00146     FILE* F = fopen(FNm.CStr(), "wt");
00147     for (int u = 0; u < NIDAttrH.Len(); u++) {
00148       int NID = NIDAttrH.GetKey(u);
00149       TStr NodeName = NodeNameH.IsKeyId(NID)? NodeNameH.GetKey(NID): TStr::Fmt("%d", NID);
00150       for (int k = 0; k < NIDAttrH[u].Len(); k++) {
00151         int KID = NIDAttrH[u][k];
00152         TStr FeatName = FeatNameH.IsKeyId(KID)? FeatNameH.GetKey(KID): TStr::Fmt("%d", KID);
00153         fprintf(F,"%s\t%s\n", NodeName.CStr(), FeatName.CStr());
00154       }
00155     }
00156     fclose(F);
00157   }
00158   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntV>& NIDAttrH, const TStrHash<TInt>& FeatNameH) {
00159     TStrHash<TInt> TmpH;
00160     DumpNIDAttrHToNIDK(FNm, NIDAttrH, FeatNameH, TmpH);
00161   }
00162   static void DumpNIDAttrHToNIDK(const TStr& FNm, const THash<TInt, TIntV>& NIDAttrH) {
00163     TStrHash<TInt> TmpH1, TmpH2;
00164     DumpNIDAttrHToNIDK(FNm, NIDAttrH, TmpH1, TmpH2);
00165   }
00166   static int GetAttrs(const THash<TInt, TIntV>& NIDAttrH) {
00167     int Attrs = 0;
00168     for (int u = 0; u < NIDAttrH.Len(); u++) {
00169       for (int k = 0; k < NIDAttrH[u].Len(); k++) {
00170         if (NIDAttrH[u][k] >= Attrs) { Attrs = NIDAttrH[u][k] + 1; }
00171       }
00172     }
00173     return Attrs;
00174   }
00175   //Metis format (N + 1) line describes the attributes of N. ID start from 1
00176   static void DumpNIDAttrHToMetis(const TStr& FNm, const THash<TInt, TIntV>& NIDAttrH, const TIntV& NIDV) {
00177     int AttrCnt = 0;
00178     for (int u = 1; u < NIDV.Len(); u++) {
00179       if (! NIDAttrH.IsKey(NIDV[u])) { continue; }
00180       AttrCnt += NIDAttrH.GetDat(NIDV[u]).Len();
00181     }
00182     IAssert (NIDV[0] == -1);
00183     FILE* F = fopen(FNm.CStr(), "wt");
00184     fprintf(F, "%d %d\n", NIDV.Len() - 1, AttrCnt);
00185     int TmpCnt = 0;
00186     for (int u = 1; u < NIDV.Len(); u++) {
00187       if (NIDAttrH.IsKey(NIDV[u])) {  
00188         for (int k = 0; k < NIDAttrH.GetDat(NIDV[u]).Len(); k++) {
00189           if (k > 0) { fprintf(F, " "); }
00190           fprintf(F, "%d", NIDAttrH.GetDat(NIDV[u])[k].Val + 1);
00191           TmpCnt++;
00192         }
00193       }
00194       fprintf(F, "\n");
00195     }
00196     fclose(F);
00197     IAssert(AttrCnt == TmpCnt);
00198 
00199   }
00200   static void FilterLowEntropy(const THash<TInt, TIntV>& OldNIDAttrH, THash<TInt, TIntV>& NewNIDAttrH, const TIntStrH& OldNameH, TIntStrH& NewNameH, const double MinFrac = 0.00001, const double MaxFrac = 0.95, const int MinCnt = 3) {
00201     TIntH KIDCntH;
00202     for (int u = 0; u < OldNIDAttrH.Len(); u++) {
00203       for (int k = 0; k < OldNIDAttrH[u].Len(); k++) {
00204         KIDCntH.AddDat(OldNIDAttrH[u][k])++;
00205       }
00206     }
00207     KIDCntH.SortByDat(false);
00208 
00209     TIntSet SelectedK(KIDCntH.Len());
00210     for (int c = 0; c < KIDCntH.Len(); c++) {
00211       double Frac = (double) KIDCntH[c].Val / (double) OldNIDAttrH.Len();
00212       if (KIDCntH[c].Val < MinCnt) { continue; }
00213       if (Frac > MaxFrac || Frac < MinFrac) { continue; }
00214       SelectedK.AddKey(KIDCntH.GetKey(c));
00215     }
00216     printf("%d attributes selected from %d\n", SelectedK.Len(), KIDCntH.Len());
00217     NewNIDAttrH.Gen(OldNIDAttrH.Len());
00218     for (int u = 0; u < OldNIDAttrH.Len(); u++) {
00219       int NID = OldNIDAttrH.GetKey(u);
00220       TIntV& AttrV = NewNIDAttrH.AddDat(NID);
00221       for (int k = 0; k < OldNIDAttrH[u].Len(); k++) {
00222         if (! SelectedK.IsKey(OldNIDAttrH[u][k])) { continue; }
00223         AttrV.Add(SelectedK.GetKeyId(OldNIDAttrH[u][k]));
00224       }
00225     }
00226 
00227     if (! OldNameH.Empty()) {
00228       NewNameH.Gen(SelectedK.Len());
00229       for (int k = 0; k < SelectedK.Len(); k++) {
00230         int OldKID = SelectedK.GetKey(k);
00231         if (OldNameH.IsKey(OldKID)) {
00232           NewNameH.AddDat(k, OldNameH.GetDat(OldKID));
00233         }
00234       }
00235       printf("%d attributes names copied\n", NewNameH.Len());
00236     }
00237   }
00238   static void FilterLowEntropy(const THash<TInt, TIntV>& OldNIDAttrH, THash<TInt, TIntV>& NewNIDAttrH, const double MinFrac = 0.00001, const double MaxFrac = 0.95, const int MinCnt = 3) {
00239     TIntStrH TmpH1, TmpH2;
00240     FilterLowEntropy(OldNIDAttrH, NewNIDAttrH, TmpH1, TmpH2, MinFrac, MaxFrac, MinCnt);
00241   }
00242 };
00243 class TCesna { //CESNA: community detection in networks with node attributes
00244 private:
00245   PUNGraph G; //graph to fit
00246   TVec<TIntSet> X; // X[u] = {k| X_uk = 1}
00247   TVec<TIntFltH> F; // membership for each user (Size: Nodes * Coms)
00248   TVec<TFltV> W; // weight vector for logistic regression. w_ck = W[k][c] (Column vector)
00249   TInt Attrs; // number of attributes
00250   TRnd Rnd; // random number generator
00251   TIntSet NIDToIdx; // original node ID vector NIDToIdx[i] = Node ID for index i, NIDToIdx.GetKey(NID) = index for NID
00252   TFlt RegCoef; //Regularization coefficient when we fit for P_c +: L1, -: L2
00253   TFltV SumFV; // sum_u F_uc for each community c. Needed for efficient calculation
00254   TInt NumComs; // number of communities
00255   TVec<TIntSet> HOVIDSV; //NID pairs to hold out for cross validation
00256   TVec<TIntSet> HOKIDSV; //set of attribute index (k) to hold out
00257 public:
00258   TFlt MinVal; // minimum value of F (0)
00259   TFlt MaxVal; // maximum value of F (for numerical reason)
00260   TFlt MinValW; // minimum value of W (for numerical reason)
00261   TFlt MaxValW; // maximum value of W (for numerical reason)
00262   TFlt NegWgt; // weight of negative example (a pair of nodes without an edge)
00263   TFlt LassoCoef; // L1 regularization coefficient for W (MLE = argmax P(X|F, W) - LassoCoef * |W|)
00264   TFlt WeightAttr; // likelihood = log P(G|F) + WeightAttr * log P(X|F, W)
00265   TFlt PNoCom; // base probability \varepsilon (edge probability between a pair of nodes sharing no community
00266   TBool DoParallel; // whether to use parallelism for computation
00267 
00268   TCesna() { G = TUNGraph::New(10, -1); }
00269   TCesna(const PUNGraph& GraphPt, const THash<TInt, TIntV>& NIDAttrH, const int& InitComs, const int RndSeed = 0): Rnd(RndSeed), RegCoef(0), 
00270     MinVal(0.0), MaxVal(10.0), MinValW(-10.0), MaxValW(10.0), NegWgt(1.0), LassoCoef(1.0), WeightAttr(1.0) { SetGraph(GraphPt, NIDAttrH); NeighborComInit(InitComs); }
00271   void Save(TSOut& SOut) {
00272     G->Save(SOut);
00273     X.Save(SOut);
00274     F.Save(SOut);
00275     W.Save(SOut);
00276     Attrs.Save(SOut);
00277     NIDToIdx.Save(SOut);
00278     RegCoef.Save(SOut);
00279     LassoCoef.Save(SOut);
00280     SumFV.Save(SOut);
00281     NumComs.Save(SOut);
00282     HOVIDSV.Save(SOut);
00283     HOKIDSV.Save(SOut);
00284     MinVal.Save(SOut);
00285     MaxVal.Save(SOut);
00286     MinValW.Save(SOut);
00287     MaxValW.Save(SOut);
00288     NegWgt.Save(SOut);
00289     PNoCom.Save(SOut);
00290   }
00291   void Load(TSIn& SIn, const int& RndSeed = 0) {
00292     G->Load(SIn);
00293     X.Load(SIn);
00294     F.Load(SIn);
00295     W.Load(SIn);
00296     Attrs.Load(SIn);
00297     NIDToIdx.Load(SIn);
00298     RegCoef.Load(SIn);
00299     LassoCoef.Load(SIn);
00300     SumFV.Load(SIn);
00301     NumComs.Load(SIn);
00302     HOVIDSV.Load(SIn);
00303     HOKIDSV.Load(SIn);
00304     MinVal.Load(SIn);
00305     MaxVal.Load(SIn);
00306     MinValW.Load(SIn);
00307     MaxValW.Load(SIn);
00308     NegWgt.Load(SIn);
00309     PNoCom.Load(SIn);
00310   }
00311 
00312   void SetGraph(const PUNGraph& GraphPt, const THash<TInt, TIntV>& NIDAttrH);
00313   void SetRegCoef(const double _RegCoef) { RegCoef = _RegCoef; }
00314   double GetRegCoef() { return RegCoef; }
00315   void SetWeightAttr(const double _WeightAttr) { IAssert (_WeightAttr <= 1.0 && _WeightAttr >= 0.0); WeightAttr = _WeightAttr; }
00316   double GetWeightAttr() { return WeightAttr; }
00317   void SetLassoCoef(const double _LassoCoef) { LassoCoef = _LassoCoef; }
00318   int GetAttrs() { return Attrs; }
00319   double GetComFromNID(const int& NID, const int& CID) {
00320     int NIdx = NIDToIdx.GetKeyId(NID);
00321     if (F[NIdx].IsKey(CID)) {
00322       return F[NIdx].GetDat(CID);
00323     } else {
00324       return 0.0;
00325     }
00326   }
00327   double GetLassoCoef() { return LassoCoef; }
00328   void InitW() { // initialize W
00329     W.Gen(Attrs);
00330     for (int k = 0; k < Attrs; k++) {
00331       W[k].Gen(NumComs + 1);
00332     }
00333   }
00334   void SetAttrHoldOut(const int NID, const int KID) {
00335     int NIdx = NIDToIdx.GetKeyId(NID);
00336     HOKIDSV[NIdx].AddKey(KID);
00337   }
00338   void SetAttrHoldOutForOneNode(const int NID) {
00339     for (int k = 0; k < Attrs; k++) {
00340       SetAttrHoldOut(NID, k);
00341     }
00342   }
00343   void GetW(TVec<TFltV>& _W) { _W = W; }
00344   void SetW(TVec<TFltV>& _W) { W = _W; }
00345   void RandomInit(const int InitComs);
00346   void NeighborComInit(const int InitComs);
00347   void NeighborComInit(TFltIntPrV& NIdPhiV, const int InitComs);
00348   int GetNumComs() { return NumComs; }
00349   void SetCmtyVV(const TVec<TIntV>& CmtyVV);
00350   double Likelihood(const bool DoParallel = false);
00351   double LikelihoodForRow(const int UID);
00352   double LikelihoodForRow(const int UID, const TIntFltH& FU);
00353   double LikelihoodAttrKForRow(const int UID, const int K) { return LikelihoodAttrKForRow(UID, K, F[UID]); }
00354   double LikelihoodAttrKForRow(const int UID, const int K, const TIntFltH& FU) { return LikelihoodAttrKForRow(UID, K, FU, W[K]); }
00355   double LikelihoodAttrKForRow(const int UID, const int K, const TIntFltH& FU, const TFltV& WK);
00356   double LikelihoodForWK(const int K, const TFltV& WK) {
00357     double L = 0.0;
00358     for (int u = 0; u < F.Len(); u++) {
00359       if (HOKIDSV[u].IsKey(K)) { continue; }
00360       L += LikelihoodAttrKForRow(u, K, F[u], WK);
00361     }
00362     for (int c = 0; c < WK.Len() - 1; c++) {
00363       L -= LassoCoef * fabs(WK[c]);
00364     } 
00365     return L;
00366   }
00367   double LikelihoodForWK(const int K) { return LikelihoodForWK(K, W[K]); }
00368   double LikelihoodAttr() {
00369     double L = 0.0;
00370     for (int k = 0; k < Attrs; k++) {
00371       for (int u = 0; u < F.Len(); u++) {
00372         if (HOKIDSV[u].IsKey(k)) { continue; }
00373         L += LikelihoodAttrKForRow(u, k, F[u], W[k]);
00374       }
00375     }
00376     return L;
00377   }
00378   double LikelihoodGraph() {
00379     double L = Likelihood();
00380     //add regularization
00381     if (RegCoef > 0.0) { //L1
00382       for (int u = 0; u < F.Len(); u++) {
00383         L += RegCoef * Sum(F[u]);
00384       }
00385     }
00386     if (RegCoef < 0.0) { //L2
00387       for (int u = 0; u < F.Len(); u++) {
00388         L -= RegCoef * Norm2(F[u]);
00389       }
00390     }
00391 
00392     return L - WeightAttr * LikelihoodAttr();
00393   }
00394   void GenHoldOutAttr(const double HOFrac, TVec<TIntSet>& HOSetV) {
00395     HOSetV.Gen(F.Len());
00396     int HoldOutCnt = (int) ceil(HOFrac * G->GetNodes() * Attrs);
00397     TIntPrSet NIDKIDSet(HoldOutCnt);
00398     int Cnt = 0;
00399     for (int h = 0; h < 10 * HoldOutCnt; h++) {
00400       int UID = Rnd.GetUniDevInt(F.Len());
00401       int KID = Rnd.GetUniDevInt(Attrs);
00402       if (! NIDKIDSet.IsKey(TIntPr(UID, KID))) { 
00403         NIDKIDSet.AddKey(TIntPr(UID, KID)); 
00404         HOSetV[UID].AddKey(KID);
00405         Cnt++;
00406       }
00407       if (Cnt >= HoldOutCnt) { break; }
00408     }
00409     printf("%d hold out pairs generated for attributes\n", Cnt);
00410   }
00411   void SetHoldOut(const double HOFrac) { 
00412     TVec<TIntSet> HoldOut; 
00413     TCesnaUtil::GenHoldOutPairs(G, HoldOut, HOFrac, Rnd); 
00414     GenHoldOutAttr(HOFrac, HOKIDSV);
00415     HOVIDSV = HoldOut; 
00416   }
00417   void GradientForRow(const int UID, TIntFltH& GradU, const TIntSet& CIDSet);
00418   void GradientForWK(TFltV& GradV, const int K) {
00419     GradV.Gen(NumComs + 1);
00420     for (int u = 0; u < F.Len(); u++) {
00421       if (HOKIDSV[u].IsKey(K)) { continue; }
00422       double Pred = PredictAttrK(u, K);
00423       for (TIntFltH::TIter CI = F[u].BegI(); CI < F[u].EndI(); CI++) { 
00424         GradV[CI.GetKey()] += (GetAttr(u, K) - Pred) * GetCom(u, CI.GetKey());
00425       }
00426       GradV[NumComs] += (GetAttr(u, K) - Pred);
00427     }
00428     
00429     for (int c = 0; c < GradV.Len() - 1; c++) {
00430       GradV[c] -= LassoCoef * TMath::Sign(GetW(c, K));
00431     }
00432   }
00433   void GetCmtyVV(TVec<TIntV>& CmtyVV);
00434   void GetCmtyVV(TVec<TIntV>& CmtyVV, TVec<TFltV>& Wck, const double Thres, const int MinSz = 3);
00435   void GetCmtyVV(TVec<TIntV>& CmtyVV, const double Thres, const int MinSz = 3) {
00436     TVec<TFltV> TmpV;
00437     GetCmtyVV(CmtyVV, TmpV, Thres, MinSz); 
00438   }
00439   void GetCmtyVV(TVec<TIntV>& CmtyVV, TVec<TFltV>& Wck) {
00440     GetCmtyVV(CmtyVV, Wck, sqrt(2.0 * (double) G->GetEdges() / G->GetNodes() / G->GetNodes()), 3);
00441   }
00442 
00443   void GetCmtyVVUnSorted(TVec<TIntV>& CmtyVV);
00444   void GetCmtyVVUnSorted(TVec<TIntV>& CmtyVV, const double Thres, const int MinSz = 3);
00445   /* GetCmtyVVRelative: NOT working well (low accuracy)
00446   void GetCmtyVVRelative(TVec<TIntV>& CmtyVV, const int MinSz = 3) {
00447     CmtyVV.Clr();
00448     for (int c = 0; c < NumComs; c++) {
00449       TIntV CmtyV;
00450       double MaxVal = 0.0;
00451       for (int u = 0; u < G->GetNodes(); u++) {
00452         if (GetCom(u, c) > MaxVal) { MaxVal = GetCom(u, c); }
00453       }
00454       if (MaxVal == 0.0) { continue; }
00455       for (int u = 0; u < G->GetNodes(); u++) {
00456         if (GetCom(u, c) > 0.5 * MaxVal) { CmtyV.Add(NIDToIdx[u]); }
00457       }
00458       if (CmtyV.Len() >= MinSz) { CmtyVV.Add(CmtyV); }
00459     }
00460     if ( NumComs != CmtyVV.Len()) {
00461       printf("Community vector generated. %d communities are ommitted\n", NumComs.Val - CmtyVV.Len());
00462     }
00463   }
00464   */
00465   int FindComs(TIntV& ComsV, const bool UseBIC = false, const double HOFrac = 0.2, const int NumThreads = 20, const TStr PlotLFNm = TStr(), const double StepAlpha = 0.3, const double StepBeta = 0.1);
00466   int FindComs(const int NumThreads, const int MaxComs, const int MinComs, const int DivComs, const TStr OutFNm, const bool UseBIC = false, const double HOFrac = 0.1, const double StepAlpha = 0.3, const double StepBeta = 0.3);
00467   void DisplayAttrs(const int TopK, const TStrHash<TInt>& NodeNameH) {
00468     for (int u = 0; u < X.Len(); u++) {
00469       if (NodeNameH.Len() > 0) {
00470         printf("NID: %s\t Attrs: ", NodeNameH.GetKey(NIDToIdx[u]));
00471       } else {
00472         printf("NID: %d\t Attrs: ", NIDToIdx[u].Val);
00473       }
00474       for (int k = 0; k < X[u].Len(); k++) {
00475         printf("%d, ", X[u][k].Val);
00476       }
00477       printf("\n");
00478       if (u >= TopK) { break; }
00479     }
00480   }
00481   double LikelihoodHoldOut();
00482   double GetStepSizeByLineSearch(const int UID, const TIntFltH& DeltaV, const TIntFltH& GradV, const double& Alpha, const double& Beta, const int MaxIter = 10);
00483   double GetStepSizeByLineSearchForWK(const int K, const TFltV& DeltaV, const TFltV& GradV, const double& Alpha, const double& Beta, const int MaxIter = 10) {
00484     double StepSize = 1.0;
00485     double InitLikelihood = LikelihoodForWK(K);
00486     TFltV NewVarV(DeltaV.Len());
00487     IAssert(DeltaV.Len() == NumComs + 1);
00488     for(int iter = 0; iter < MaxIter; iter++) {
00489       for (int c = 0; c < DeltaV.Len(); c++){
00490         double NewVal = W[K][c] + StepSize * DeltaV[c];
00491         if (NewVal < MinValW) { NewVal = MinValW; }
00492         if (NewVal > MaxValW) { NewVal = MaxValW; }
00493         NewVarV[c] = NewVal;
00494       }
00495       if (LikelihoodForWK(K, NewVarV) < InitLikelihood + Alpha * StepSize * TLinAlg::DotProduct(GradV, DeltaV)) {
00496         StepSize *= Beta;
00497       } else {
00498         break;
00499       }
00500       if (iter == MaxIter - 1) { 
00501         StepSize = 0.0;
00502         break;
00503       }
00504     }
00505     return StepSize;
00506   }
00507   int GetPositiveW() {
00508     int PosCnt = 0;
00509     for (int c = 0; c < NumComs; c++) {
00510       for (int k = 0; k < Attrs; k++) {
00511         if (GetW(c, k) > 0.0) { PosCnt++; }
00512       }
00513     }
00514     return PosCnt;
00515   }
00516   int MLEGradAscent(const double& Thres, const int& MaxIter, const TStr PlotNm, const double StepAlpha = 0.3, const double StepBeta = 0.1);
00517   int MLEGradAscentParallel(const double& Thres, const int& MaxIter, const int ChunkNum, const int ChunkSize, const TStr PlotNm, const double StepAlpha = 0.3, const double StepBeta = 0.1);
00518   int MLEGradAscentParallel(const double& Thres, const int& MaxIter, const int ChunkNum, const TStr PlotNm = TStr(), const double StepAlpha = 0.3, const double StepBeta = 0.1) {
00519     int ChunkSize = G->GetNodes() / 10 / ChunkNum;
00520     if (ChunkSize == 0) { ChunkSize = 1; }
00521     return MLEGradAscentParallel(Thres, MaxIter, ChunkNum, ChunkSize, PlotNm, StepAlpha, StepBeta);
00522   }
00523   //double FindOptimalThres(const TVec<TIntV>& TrueCmtyVV, TVec<TIntV>& CmtyVV);
00524   double inline GetCom(const int& NID, const int& CID) {
00525     if (F[NID].IsKey(CID)) {
00526       return F[NID].GetDat(CID);
00527     } else {
00528       return 0.0;
00529     }
00530   }
00531   double inline GetAttr(const int& NID, const int& K) {
00532     if (X[NID].IsKey(K)) {
00533       return 1.0;
00534     } else {
00535       return 0.0;
00536     }
00537   }
00538   void inline AddCom(const int& NID, const int& CID, const double& Val) {
00539     if (F[NID].IsKey(CID)) {
00540       SumFV[CID] -= F[NID].GetDat(CID);
00541     }
00542     F[NID].AddDat(CID) = Val;
00543     SumFV[CID] += Val;
00544   }
00545 
00546   void inline DelCom(const int& NID, const int& CID) {
00547     if (F[NID].IsKey(CID)) {
00548       SumFV[CID] -= F[NID].GetDat(CID);
00549       F[NID].DelKey(CID);
00550     }
00551   }
00552   /*
00553   double inline DotProduct(const TIntFltH& UV, const TFltV& VV) {
00554     double DP = 0;
00555     for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
00556       DP += VV[HI.GetKey()] * HI.GetDat(); 
00557     }
00558     return DP;
00559   }
00560   */
00561   double inline DotProduct(const TIntFltH& UV, const TIntFltH& VV) {
00562     double DP = 0;
00563     if (UV.Len() > VV.Len()) {
00564       for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
00565         if (VV.IsKey(HI.GetKey())) { 
00566           DP += VV.GetDat(HI.GetKey()) * HI.GetDat(); 
00567         }
00568       }
00569     } else {
00570       for (TIntFltH::TIter HI = VV.BegI(); HI < VV.EndI(); HI++) {
00571         if (UV.IsKey(HI.GetKey())) { 
00572           DP += UV.GetDat(HI.GetKey()) * HI.GetDat(); 
00573         }
00574       }
00575     }
00576     return DP;
00577   }
00578   double inline DotProduct(const int& UID, const int& VID) {
00579     return DotProduct(F[UID], F[VID]);
00580   }
00581   double inline Prediction(const TIntFltH& FU, const TIntFltH& FV) {
00582     double DP = log (1.0 / (1.0 - PNoCom)) + DotProduct(FU, FV);
00583     IAssertR(DP > 0.0, TStr::Fmt("DP: %f", DP));
00584     return exp(- DP);
00585   }
00586   double inline PredictAttrK(const TIntFltH& FU, const TFltV& WK) {
00587     double DP = 0.0;
00588     for (TIntFltH::TIter FI = FU.BegI(); FI < FU.EndI(); FI++) {
00589       DP += FI.GetDat() * WK[FI.GetKey()];
00590     }
00591     DP += WK.Last();
00592     return Sigmoid(DP);
00593   }
00594   double inline PredictAttrK(const TIntFltH& FU, const int K) {
00595     return PredictAttrK(FU, W[K]);
00596   }
00597   double inline PredictAttrK(const int UID, const int K) {
00598     return PredictAttrK(F[UID], W[K]);
00599   }
00600   double inline GetW(const int CID, const int K) {
00601     return W[K][CID];
00602   }
00603   double inline Prediction(const int& UID, const int& VID) {
00604     return Prediction(F[UID], F[VID]);
00605   }
00606   double inline Sum(const TIntFltH& UV) {
00607     double N = 0.0;
00608     for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
00609       N += HI.GetDat();
00610     }
00611     return N;
00612   }
00613   double inline Norm2(const TIntFltH& UV) {
00614     double N = 0.0;
00615     for (TIntFltH::TIter HI = UV.BegI(); HI < UV.EndI(); HI++) {
00616       N += HI.GetDat() * HI.GetDat();
00617     }
00618     return N;
00619   }
00620   /*
00621   double inline Norm1(const TFltV& UV) {
00622     double N = 0.0;
00623     for (int i = 0; i < UV.Len(); i++) {
00624       N += fabs(UV[i]);
00625     }
00626     return N;
00627   }
00628   */
00629   double inline Sigmoid(const double X) {
00630     return 1.0 / ( 1.0 + exp(-X));
00631   }
00632 };
00633 
00634 
00635 #endif